
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Technology Mapping and Optimization Algorithms for
Logic Synthesis of Advanced Technologies

Alessandro TEMPIA CALVINO

Thèse n° 10 876

2024

Présentée le 4 octobre 2024

Prof. V. Kuncak, président du jury
Prof. G. De Micheli, directeur de thèse
Prof. M. Ciesielski, rapporteur
Prof. J. Cortadella, rapporteur
Prof. P. Ienne, rapporteur

Faculté informatique et communications
Laboratoire des systèmes intégrés (IC/STI)
Programme doctoral en informatique et communications

To my family and to all those who have taught me

Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Giovanni De Micheli, for

warmly welcoming me into his laboratory of brilliant researchers. His invaluable guidance,

expertise, motivation, and unwavering support were crucial to the realization of this thesis.

Besides my advisor, I would like to extend my sincere thanks to Dr. Alan Mishchenko for the

fruitful collaboration and the many insightful discussions we shared over the past two years,

both on research and life. His enthusiasm and creative mind, constantly generating a wealth

of research ideas, were instrumental in shaping multiple parts of this thesis.

I am also deeply thankful to Dr. Luca Amarù and Dr. Patrick Vuillod, who, during my internship

at Synopsys, guided me toward pursuing a PhD with Prof. Giovanni De Micheli and introduced

me to research in the field of logic synthesis. Without their encouragement and influence, I

might not have embarked on this journey.

Furthermore, I am grateful to Dr. Heinz Riener for his guidance at the beginning of the PhD.

I extend my special thanks to Dr. Xiaoqing Xu and the entire Bodger team at Google for giving

me the opportunity to intern and collaborate on groundbreaking research projects.

I would like to deeply thank all the members of my oral committee - Prof. Maciej Ciesielski,

Prof. Jordi Cortadella, Prof. Paolo Ienne, and Prof. Viktor Kunčak - for their time, valuable

feedback, and insightful questions while reviewing this thesis.

I also wish to thank Prof. Jason Cong, Prof. Wayne Burleson, Prof. Robert Wille, and Dr. Victor

Kravets for their support.

Additionally, I would like to acknowledge Prof. Ludovic Apvrille and Prof. Renaud Pacalet for

their guidance and introduction to research during my master’s studies.

My sincere thanks also go to my colleagues at the Integrated Systems Laboratory (LSI), in

particular to Andrea, Sonia, Mingfei, Giulia, and Rassul, for our fruitful collaborations. I am

also grateful to the rest of my labmates for creating a supportive research environment, as well

as to the visitors and students who enriched the LSI during their time with us. A special thanks

goes to Chantal Demont for her kind help and support throughout my PhD journey.

I would like to thank all my friends in Lausanne, especially Marija, Marco, Andrea, and Martina,

for their support and friendship, as well as my friends in Italy, the United States, and France,

and those who have moved abroad but remained close. Though not everyone is mentioned by

name, please accept my heartfelt appreciation to each of you whom I have had the pleasure of

v

Acknowledgements

meeting over these past four years, both in my academic and personal life.

Last but not least, I would like to thank my mother and my grandparents for supporting me

throughout my PhD studies and my life in general.

Lausanne, 16 Sep 2024 A. T.C.

vi

Abstract

Logic synthesis is a key component of electronic design automation (EDA) tools, essential

for designing high-performance, compact, and power-efficient integrated circuits. The con-

tinuous downscaling of complementary metal-oxide-semiconductor (CMOS) technology has

led to remarkable improvements in performance, power efficiency, and density of integrated

circuits. However, as CMOS technology faces challenges in further downscaling transistor

dimensions, with only marginal improvements at smaller nodes, logic optimization becomes

even more vital for enhancing power-performance-area (PPA) metrics. Additionally, many

potential alternative technologies to CMOS are emerging, offering significant advantages in

power efficiency and performance. Nevertheless, existing EDA tools for CMOS are often not

well-suited for these new technologies, necessitating the development of specialized synthesis

techniques.

This thesis focuses on developing state-of-the-art logic synthesis methods for advanced

technologies. These technologies include conventional CMOS for field-programmable gate

arrays (FPGAs) and standard-cell-based designs, as well as superconducting electronics (SCE).

In particular, we concentrate on the technology mapping problem, which involves translating

a technology-independent circuit description into an interconnection of gates specific to a

technology library.

Novel contributions are organized into four parts. First, we improve performance-driven

technology mapping for FPGAs. We introduce powerful and runtime-efficient algorithms

to decompose functions into lookup tables (LUTs). Then, we develop a LUT mapper that

utilizes this decomposition to minimize delay. Our results show substantial advancements

over existing methods, including some of the best public results for combinational benchmark

circuits. We also propose a LUT mapper that exploits non-routable connections in FPGAs

to minimize the circuit delay. Second, we enhance technology mapping for standard-cell-

based design. We develop algorithms that address the matching and covering problems, fully

leveraging standard cells in modern libraries, including large-input and multiple-output cells.

We demonstrate significant improvements compared to the state of the art. Third, motivated

by multiple logic representations available in logic synthesis, we propose a technique to

translate circuits between different logic representations and perform circuit optimization.

Then, we show how to leverage efficiently don’t care conditions in logic rewriting. Our methods

vii

Acknowledgements

contribute to obtaining the best-known results in majority-inverter graphs (MIGs) size. Next,

we present practical algorithms for factored form literal optimization in modern logic synthesis

based on and-inverter graphs (AIGs), demonstrating applications in standard-cell-based

design and transistor-level synthesis. Fourth and last, we research synthesis solutions for

the two most mature logic families in SCE: the adiabatic quantum-flux parametron (AQFP)

and the single-flux quantum (SFQ). For AQFP circuits, we demonstrate that depth-optimal

technology mapping is a tractable problem and propose scalable algorithms for mapping and

post-mapping area reduction. Finally, we introduce a synthesis framework for SFQ circuits.

We show strong results in both logic families.

Considering the increasing difficulties in meeting the design objectives of modern ICs, we

argue that innovative research in EDA solutions is of extreme importance.

Key words: Electronic design automation, logic synthesis, technology mapping, FPGA,

ASIC, emerging technologies, superconducting electronics

viii

Sommario

La sintesi logica è un componente chiave degli strumenti di electronic design automa-

tion (EDA), essenziale per la progettazione di chip prestanti, compatti ed a basso consumo

energetico. La continua miniaturizzazione della tecnologia CMOS ha portato a notevoli mi-

glioramenti nelle prestazioni, nell’efficienza energetica e nella densità dei circuiti integrati.

Tuttavia, poiché la tecnologia CMOS fatica nel ridurre le dimensioni dei transistor, con miglio-

ramenti marginali ai nodi più recenti, l’ottimizzazione logica diventa cruciale per migliorare

la metrica power-performance-area (PPA). Inoltre, stanno emergendo numerose tecnologie

alternative a CMOS, con vantaggi in termini di efficienza energetica e prestazioni. Tuttavia,

gli strumenti EDA esistenti per CMOS spesso non sono adatti a queste nuove tecnologie,

rendendo necessario lo sviluppo di tecniche di sintesi specializzate.

Questa tesi si concentra sullo sviluppo di nuovi metodi di sintesi logica per tecnologie

avanzate. Queste tecnologie includono CMOS per field-programmable gate array (FPGA)

e standard-cell-based designs, nonché superconducting electronics (SCE). In particolare, ci

concentriamo sul problema della mappatura tecnologica, che implica la traduzione di una

descrizione di circuito indipendente dalla tecnologia in un’interconnessione di porte logiche

specifiche.

La tesi è organizzata in quattro parti. In primo luogo, miglioriamo la mappatura tecnologi-

ca per FPGA. Proponiamo algoritmi efficienti per decomporre funzioni in lookup tables (LUTs).

Sviluppiamo poi un mapper per LUTs che utilizza questa decomposizione per migliorare le

prestazioni. I nostri risultati mostrano progressi sostanziali rispetto ai metodi esistenti e alcuni

dei migliori risultati pubblici per circuiti combinatori. Proponiamo anche un mapper per LUTs

che sfrutta le non-routable connections in FPGA per migliorare ulteriormente le prestazioni.

In secondo luogo, miglioriamo la mappatura tecnologica per standard-cell-based designs.

Sviluppiamo algoritmi che affrontano i problemi di matching e covering, sfruttando appieno

le librerie di standard cells, comprese le porte con molti ingressi e più uscite. Dimostriamo

miglioramenti significativi rispetto allo stato dell’arte. In terzo luogo, motivati dalle molteplici

rappresentazioni logiche utilizzate in sintesi logica, proponiamo una tecnica per navigare

tra diverse rappresentazioni ed ottimizzarle. Poi, mostriamo come sfruttare le condizioni

don’t care nella riscrittura logica. I nostri metodi contribuiscono ad ottenere i migliori risultati

conosciuti finora in area per majority-inverter graph (MIGs). Presentiamo inoltre algoritmi

ix

Acknowledgements

per l’ottimizzazione di factored form literals sugli and-inverter graphs (AIGs). Dimostriamo

applicazioni in standard-cell-based design e nella sintesi a livello di transistor. Infine, ci

concentriamo sulla sintesi per le due famiglie di SCE più mature: l’adiabatic quantum-flux

parametron (AQFP) e il single-flux quantum (SFQ). Per i circuiti AQFP, dimostriamo che la map-

patura tecnologica ottimale per prestazioni è un problema trattabile e proponiamo algoritmi

efficienti per eseguire la mappatura e la riduzione dell’area post-mappatura. Introduciamo

poi un framework di sintesi per i circuiti SFQ. Mostriamo risultati significativi in entrambe le

famiglie logiche.

Considerando le crescenti difficoltà nel soddisfare gli obiettivi di progettazione dei moder-

ni circuiti integrati, sosteniamo che la ricerca in EDA sia di estrema importanza.

Parole chiave: Electronic design automation, sintesi logica, mappatura tecnologica, FPGA,

ASIC, nuove nanotecnologie, elettronica a superconduttore

x

Contents
Acknowledgements v

Abstract (English/Italian) vii

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1

1.1 Electronic Design Automation . 2

1.2 Research Motivation . 5

1.2.1 Conventional CMOS Technologies . 6

1.2.2 Superconducting Electronics . 8

1.3 Thesis Contributions . 9

1.3.1 Technology Mapping . 9

1.3.2 Mapping for Logic Synthesis . 11

1.3.3 Synthesis for Superconducting Electronics 12

1.4 Thesis Organization . 13

2 Background 15

2.1 Boolean Algebra . 15

2.2 Data Structures . 16

2.2.1 Truth Tables . 17

2.2.2 Two-level Representations . 17

2.2.3 Binary Decision Diagrams . 18

2.2.4 Multi-level Logic Networks . 20

2.3 Cuts and Partitions . 21

2.3.1 Cuts and Cut Enumeration . 21

2.3.2 Windowing . 23

2.4 Matching . 23

2.4.1 Equivalence Classes . 24

2.4.2 Pattern Matching . 24

2.4.3 Boolean Matching . 25

xi

Contents

2.4.4 Generalized Matching . 25

2.5 Algorithms . 26

2.5.1 Algebraic Methods . 26

2.5.2 Boolean Methods . 27

2.5.3 Exact Synthesis Methods . 29

2.6 Benchmark suites . 29

2.7 Summary . 31

3 Technology Mapping for FPGAs 33

3.1 Motivation . 34

3.2 Preliminaries . 36

3.2.1 Boolean Decomposition . 36

3.2.2 FPGA Technology Mapping . 38

3.3 Boolean Decomposition into LUTs . 39

3.3.1 Theory . 39

3.3.2 Finding a Feasible Variable Partition . 42

3.3.3 Functional Encoding and Support Minimization 44

3.3.4 Maximizing the Shared Set . 48

3.3.5 Boolean Decomposition into Two LUTs . 48

3.3.6 Boolean Decomposition Beyond 2 Levels 50

3.3.7 Experimental Results . 51

3.4 Technology Mapping with Boolean Decomposition 55

3.4.1 Delay-oriented ACD . 56

3.4.2 Technology Mapping Algorithm with ACD 57

3.4.3 Experimental Results . 58

3.5 Improving Delay Leveraging Non-routable FPGA Connections 61

3.5.1 Technology Mapping Algorithm . 62

3.5.2 Experimental Results . 62

3.6 Summary . 63

4 Technology Mapping for Standard Cells 65

4.1 Motivation . 66

4.2 Preliminaries . 68

4.2.1 Delay Models in Technology Mapping . 68

4.2.2 Related Works . 71

4.2.3 Covering . 72

4.3 Hybrid Matching . 75

4.3.1 Preliminaries . 77

4.3.2 Boolean and Pattern Matching . 77

4.3.3 Mapping with Hybrid Matching . 82

4.3.4 Experimental Results . 84

4.4 Technology Mapping Using Multiple-output Cells 86

4.4.1 Extraction of Multiple-output Cells . 88

xii

Contents

4.4.2 Technology Mapping using Multiple-output Cells 91

4.4.3 Experimental Results . 96

4.4.4 Discussion . 98

4.5 Improving Covering Algorithms for Technology Mapping 100

4.5.1 Related Works . 100

4.5.2 Referencing Policy and Gate Selection . 101

4.5.3 Alternative Matches . 104

4.5.4 Experimental Results . 105

4.6 Extended Mapping (emap) . 108

4.6.1 Experimental Results . 108

4.7 Summary . 113

5 Mapping for Logic Synthesis 117

5.1 Motivation . 118

5.2 Versatile Graph Mapping . 120

5.2.1 Related Work on Graph Mapping . 121

5.2.2 Versatile Mapping . 123

5.2.3 Experimental Results . 127

5.3 Scalable Logic Rewriting Using Don’t Care Conditions 128

5.3.1 Don’t Care Classes . 130

5.3.2 Matching with Don’t Cares . 133

5.3.3 Logic Rewriting with Don’t Cares . 134

5.3.4 Experimental Results . 136

5.4 Factored Form Literals Optimization . 139

5.4.1 Preliminaries . 140

5.4.2 Factored Forms in AIGs . 142

5.4.3 Logic Optimization for Literal Count . 144

5.4.4 Experimental Results . 146

5.4.5 Applications . 147

5.5 Summary . 149

6 Specializing Synthesis for Superconducting Technologies 151

6.1 Motivation . 152

6.2 Preliminaries . 153

6.2.1 Adiabatic Quantum-Flux Parametron . 154

6.2.2 Single-Flux Quantum . 155

6.2.3 Key Points . 157

6.3 Technology Mapping for AQFP Circuits . 157

6.3.1 Preliminaries . 159

6.3.2 Related Works . 162

6.3.3 Depth-Optimal Buffer and Splitter Insertion 165

6.3.4 Buffer and Splitter Optimization . 171

6.3.5 AQFP Technology Mapping . 174

xiii

Contents

6.3.6 Experimental Results . 175

6.4 Logic Synthesis for SFQ Circuits . 178

6.4.1 Related Works . 179

6.4.2 XAG-based Logic Synthesis . 181

6.4.3 Technology Mapping . 186

6.4.4 Experimental Results . 187

6.5 Summary . 189

7 Conclusions 191

7.1 Summary of Thesis Contributions . 191

7.2 Open Problems . 193

Bibliography 197

Curriculum Vitae 213

xiv

List of Figures
1.1 Simplified EDA flow. 3

1.2 Simplified logic synthesis flow. Initially, the circuit is abstracted as a logic net-

work of simple primitives, such as 2-input ANDs, with symbol ∧, and inverters,

represented with dashed edges. Then, optimization steps reduce the complexity

of the circuit. Finally, technology mapping translates the circuit into a mapped

gate-level netlist using library cells (here an OR2 cell and an AND3 cell). 4

2.1 Truth table representation in the classical tabular form and as bit string (binary

and hexadecimal), cofactor extraction w.r.t. the two most significant variables,

and variable swapping of x0 with x2. 18

2.2 BDD (reduced and ordered) for the function x0(x1 +x2). 19

2.3 BDD (reduced and ordered) with and without complemented edges for the

function x0(x1 +x2)+ x̄0x̄1x̄2. 20

2.4 Example of a Boolean network with the corresponding 3-feasible cuts. 22

2.5 Rewriting with AND-OR distributive rule a ∧ (b ∨ (c ∧d)) → (a ∧b)∨ ((a ∧ c)∧d). 27

3.1 ACD of an 8-input Boolean function into three 5-input LUTs with a 5-variable

bound set (BS), a 1-variable shared set (SS), and a 2-variable free set (FS). 35

3.2 Illustrating the AC decomposition of a Boolean function 40

3.3 ACD decomposition over a BDD with a partition of the variables into free set and

bound set. 41

3.4 Truth table representation in the classical tabular form and as bit string (binary

and hexadecimal), cofactor extraction w.r.t. the two most significant variables,

and variable swapping of x0 with x2. 43

3.5 Covering table to solve the encoding problem. 47

3.6 AC decomposition of Boolean function 0x880480018414811. 48

4.1 Possible structural patterns for AND4. 79

4.2 Indexing of patterns. 81

4.3 Subject graph with functional redundancy. 83

4.4 Example of compatible and incompatible cuts . 91

4.5 Advantages of covering using two polarities . 101

5.1 Logic sharing limitation in LUT-based rewriting 121

xv

List of Figures

5.2 Local view limitation in cut rewriting . 122

5.3 Example of projection of CDCs on a cut. 136

5.4 Translation of a factored form of a XOR2 (a) into an AIG (b). Dashed edges

represent negations. 142

5.5 Optimization of an AIG for factored form literals. Figure (a) shows the initial net-

work. Figure (b) shows the result with reduced literal count after resubstitution

is applied to the orange node. Nodes in green are roots of factored forms. 143

5.6 Substitution of p using a new node q that increases the number of factored form

literals by one. 145

5.7 CMOS network for function Z = (a +b)(c +d) and the respective pullup (PU)

and pulldown (PD) networks. 148

6.1 An AQFP full adder circuit. Splitter cells (squares labeled S) are used to drive mul-

tiple fan-out; 3-input majority cells (circles labeled 〈〉) realize the desired logic

function; dashed edges indicate an inverted connection; and buffers (squares

labeled B) path-balance the circuit. Compared to a MIG realization, the circuit

depth increases by two due to splitter cells. 154

6.2 Mapping of a CMOS circuit (a) into a circuit in SFQ technology (b). First, each

CMOS gate is replaced by the corresponding clocked SFQ gate. Then, DFF cells

are inserted to satisfy the path-balancing constraint and to balanced POs. Finally,

splitter cells (circles labeled S) are used to drive multiple fan-outs. The circuit

depth of the SFQ circuit in (b) is of 3 clock cycles. 156

6.3 Example sub-network to illustrate Algorithm 6.2 with (sb = 2). 167

6.4 Example sub-network for retiming. (sb = 3) . 172

6.5 Example of forward retiming. (sb = 3) . 173

6.6 Rewriting with AND-XOR distributivity inΨ (6.9). 183

xvi

List of Tables
2.1 The EPFL combinational benchmark suite. 30

2.2 The IWLS 2005 benchmark suite. 31

2.3 The superconducting benchmark suite. 32

3.1 Comparison on decomposing 8-input practical functions using different ACD

settings for the encoding problem. 46

3.2 Decomposition success ratio into two 4-LUTs for practical functions using dif-

ferent ACD methods. 53

3.3 Decomposition success ratio into two 6-LUTs for practical functions using dif-

ferent ACD methods. 53

3.4 Decomposition success ratio into 2 levels of 6-LUTs for practical functions given

late arriving variables. 54

3.5 Decomposition success ratio into two or three levels of 6-LUTs for practical

functions using our ACD methods. 55

3.6 Comparison of delay-driven LUT mapping, LUT mapping to “66” structure, and

LUT mapping using ACD. 60

3.7 LUT mapping in the EPFL synthesis competition. 61

3.8 Comparison of delay-driven LUT mapping and multiple ACD-based mapping

into “66” cascade structures. 63

4.1 Pattern and Index Table . 82

4.2 Results for Boolean, structural, and hybrid matching for delay-oriented technol-

ogy mapping and comparison against ABC map. 85

4.3 Results for Boolean, structural, and hybrid matching for area-oriented technol-

ogy mapping and comparison against ABC map -a. 86

4.4 Comparing our mapper against ABC for minimal delay 97

4.5 Area-oriented mapping in different settings . 98

4.6 Delay-oriented technology mapping for best delay with and without alternative

matches and a comparison against ABC map. 106

4.7 Delay-oriented technology mapping with and without alternative matches given

a worst-delay constraint 5% higher than the best one found by the mapper. . . 107

4.8 Delay-oriented technology mapping comparing mappers in ABC and a mapper

implementing the algorithms proposed in this chapter using the ASAP7 library. 110

xvii

List of Tables

4.9 Comparing our technology mapper emap against ABC &nf after performance-

driven buffering and gate sizing using the ASAP7 library. 111

4.10 Comparing our technology mapper emap against ABC &nf before and after

performance-driven buffering and gate sizing using a 28nm commercial library. 112

4.11 Area-oriented technology mapping comparing mappers in ABC and a mapper

implementing the algorithms proposed in this chapter using the ASAP7 library. 113

4.12 Area-oriented technology mapping comparing mappers in ABC and a mapper

implementing the algorithms proposed in this chapter using a 28nm commercial

library. 114

5.1 Gates selection criteria . 126

5.2 Experimental results for mapping and rewriting MIGs 128

5.3 Experimental results for rewriting XAGs and XMGs 129

5.4 Comparison between state-of-the-art MIG results and multiple MIG flows using

logic rewriting with don’t cares. 138

5.5 Latest best results for MIG size optimization. 139

5.6 Experimental results for factored form literals optimization and technology

mapping . 147

6.1 Comparison between AQFP and SFQ logic families. 157

6.2 Our technology legalization results comparing to the non-depth-optimal buffer

and splitter insertion. 176

6.3 Technology legalization results comparing to the state-of-the-art and global

optimum. 177

6.4 Technology legalization results on the 10 largest EPFL benchmarks. 178

6.5 Evaluation of our method against the state of the art. 189

xviii

List of Acronyms

AIG . and-inverter graph

ACD . Ashenhurst-Curtis decomposition

ALAP . as late as possible

AQFP . adiabatic quantum-flux parametron

ASAP . as soon as possible

ASIC . application-specific integrated circuit

BDD . binary decision diagram

CAD . computer-aided design

CMOS . complementary metal-oxide-semiconductor

DAG . directed acyclic graph

EDA . electronic design automation

FFL . factored form literal

FFLC . factored form literal count

FPGA . field-programmable gate array

IC . integrated circuits

JJ . Josephson junction

LUT . lookup table

MFFC . maximum fan-out-free cone

MIG . majority-inverter graph

MSPF . maximum set of permissible functions

NLDM . non-linear delay model

PI . primary input

PO . primary output

PPA . power-performance-area

xix

List of Acronyms

QCA . quantum-dot cellular automata

QoR . quality of results

RSFQ . rapid single-flux parametron

RTL . register-transfer level

SAT . satisfiability

SFQ . single-flux parametron

SOP . sum-of-products

TFI . transitive fan-in

TFO . transitive fan-out

XAG . xor-and graph

XAIG . xor-and-inverter graph

XMG . xor-majority graph

xx

1 Introduction

The modern era of digital electronics is marked by an unprecedented level of complexity in the

design and manufacturing of integrated circuits (ICs). Central to managing this complexity

is the field of computer-aided design (CAD), which provides the tools and methodologies to

conceptualize, model, and verify large-scale and high-performance circuits for a wide range of

applications, including information processing (e.g., computers, data centers, smartphones),

and telecommunication. Computer-aided design for electronics is more known as electronic

design automation (EDA).

The continuous downscaling of complementary metal-oxide-semiconductor (CMOS) has

led to remarkable improvements in the performance, power efficiency, and density of in-

tegrated circuits. However, this relentless miniaturization has also introduced significant

challenges in EDA as integrated circuits became more complex. Furthermore, the recent

slowdown in transistor scaling, which has traditionally followed Moore’s Law, is shifting the

main driving force of power-performance-area (PPA) improvements from physical scaling to

EDA, requiring more sophisticated designs and optimization techniques.

Logic synthesis is an essential phase of EDA tools aimed at improving the implementation

cost of integrated circuits in terms of PPA. This process is critical for transforming a high-level

description of a circuit into an optimized implementable gate-level representation suitable for

fabrication. The process of logic synthesis typically begins with an abstraction of the circuit,

described in terms of generic logic gates or Boolean functions. The initial objective is to

optimize the logic using several technology-independent techniques to reduce its complexity.

Then, the circuit is transformed into a netlist of gates that can be implemented using a specific

semiconductor technology. Here, more accurate and technology-dependent estimations of

delay and area replace the initial, simpler estimations. After technology mapping, further

optimizations can be performed using technology-dependent techniques.

Research in logic synthesis is critically important for several reasons. First, faster and

more power-efficient circuits are required for high-performance computing, data centers,

artificial intelligence, and mobile and consumer applications. As CMOS technology faces

1

Chapter 1 . Introduction

numerous challenges in further downscaling the transistor dimensions, with only marginal

improvements at smaller technology nodes, logic optimization becomes crucial for improving

PPA. Additionally, the exceedingly high costs associated with manufacturing at the latest tech-

nology nodes, now at 2 nanometers, mean that even a 1% reduction in area can translate into

significant cost savings in large-scale chip production. Second, many alternative technologies

are emerging as future potential alternatives to CMOS. Various designs realized in post-silicon

technologies have demonstrated advantages in power efficiency and performance [7, 14, 77,

166]. However, the scope of these emerging nanotechnologies remains limited compared

to their potential. Due to differing technological constraints and physical properties, exist-

ing EDA tools for CMOS are often not well-suited for these new technologies, necessitating

the development of specialized synthesis techniques. Furthermore, alternative computing

paradigms, such as quantum computing, and applications in cryptography and security, have

shown significant benefits from advancements in logic synthesis. Third, progress in related

fields, such as Boolean satisfiability and machine learning, enables the development of novel

synthesis methodologies to achieve higher PPA.

This thesis concentrates on developing novel logic synthesis techniques to improve the

quality of modern ICs. The first part proposes improved technology mapping algorithms

for field-programmable gate arrays and standard-cell designs. The second part focuses on

technology-independent logic synthesis. The third part proposes synthesis methods to realize

efficient circuits in superconducting technology.

1.1 Electronic Design Automation

EDA is a category of software tools, algorithms, and methods used to automatically design,

analyze, verify, and optimize electronic systems, particularly integrated circuits. The evolution

of EDA tools is closely linked with the history of semiconductor technology. In the early

days of semiconductor design, engineers manually designed circuit layouts and performed

simulations by hand or with simple software tools. As ICs grew in complexity and the industry

transitioned from small-scale integration (SSI) to very large-scale integration (VLSI), manual

design methods became impractical. The advent of CAD techniques laid the groundwork for

EDA, with early tools providing basic schematic capture and layout capabilities. Research in

academic institutions and companies founded in the mid-70s and 80s drove innovation in

logic synthesis, physical design, and verification. As semiconductor technology advanced,

EDA tools evolved to address the challenges of deep submicron and nanometer-scale designs,

incorporating features to manage PPA and manufacturability constraints.

The realization of ICs is structured as a flow of well-defined steps. An EDA flow starts

from a high-level behavioral description of ICs and generates a detailed, manufacturable

implementation using specific technology components. In this section, we provide a largely

simplified overview of the main steps involved in an EDA flow, illustrated in Figure 1.1. The

flow starts from a behavioral description of the IC in the form of a hardware description

2

1.1 Electronic Design Automation

Behavioral description

High-level synthesis

Logic synthesis

Physical design
(place & route)

Layout
(GDSII)

RTL description

Gate-level netlist

Figure 1.1: Simplified EDA flow.

language (e.g., Verilog, VHDL) or a programming language (e.g., SystemC, C/C++). High-level

synthesis converts the behavioral description into a register-transfer level (RTL) description,

which is an abstraction that models digital circuits using digital signals (data), registers, and

logic operations. This step is also named architectural-level synthesis as it determines the

macroscopic (block-level) structures of the circuit. Logic synthesis, instead, generates a gate-

level (or logic-level) model, consisting of an interconnection of logic primitives. In logic

synthesis, technology mapping transforms the logic model into an interconnection of library

cells reflecting the target technology. A simplified flow of the steps in logic synthesis is depicted

in Figure 1.2. Finally, there is physical design, primarily consisting of placement and routing

(P&R), where placement assigns a physical position to the cells while routing generates the

interconnections. Physical design translates the gate-level model into geometrical patterns

defining the physical layout of the chip. The final layout is typically described in the GDSII

format, which is handed over to IC foundries for fabrication.

Figure 1.1 is oversimplified in the following aspects. First, there are no clear boundaries

separating the various phases in an EDA flow nowadays. For instance, logic synthesis is also

performed during physical design to further optimize logic under a more accurate model.

Moreover, some parts of physical design, such as floorplanning, are performed at the very

3

Chapter 1 . Introduction

Architectural-
level

synthesis

Physical
design

Logic-level
abstraction

Optimization
Technology

mapping
Gate-level

netlist

x0 x1 x2 x3

f

∧ ∧ ∧

∧∧

∧

x0 x1 x2 x3

f

∧ ∧

∧ x0

x1

x2
x3

f

Figure 1.2: Simplified logic synthesis flow. Initially, the circuit is abstracted as a logic network
of simple primitives, such as 2-input ANDs, with symbol ∧, and inverters, represented with
dashed edges. Then, optimization steps reduce the complexity of the circuit. Finally, technol-
ogy mapping translates the circuit into a mapped gate-level netlist using library cells (here an
OR2 cell and an AND3 cell).

beginning of the flow. Second, the flow is not a straight line but consists of several cycles.

Third, an EDA flow includes multiple steps of formal verification and simulation.

During logic synthesis, and in general during the whole design flow, circuit optimization is

performed to maximize the circuit quality, for instance, in terms of performance, area, and

power consumption, and to meet the target constraints. Without optimization, modern ICs

would not be competitive or even feasible due to their complexity. In this thesis, we mainly

concentrate on area and delay (performance) improvements.

As shown in Figure 1.1, EDA flows represent ICs using several levels of abstractions that

grow in complexity after each step. Abstraction is necessary to simplify the optimization

problems to a tractable level and synthesize circuits in a reasonable run time. Furthermore,

without abstraction, modern circuit design would not be feasible. As a consequence, target

metrics such as power, performance, and area have to be estimated during the flow since they

are accurately known only after physical design. Abstraction led to the creation of different

estimation models, cost metrics, and data structures to represent and manipulate circuits.

In logic synthesis for CMOS design, circuits are abstracted as logic networks defined over

a set of logic primitives. Originally, logic synthesis utilized NANDs and NORs, together with

inverters, as primitives in graph representations thanks to their universality. At this time, many

approaches addressed two-level synthesis problems with Boolean functions represented as

sum-of-products (SOPs). Optimization was focused on reducing the number of implicants

and literals. Then, circuits were modeled as multi-level logic networks, where nodes are

represented in SOP form. The number of literals in the factored forms of SOPs became the

standard metric for area in technology-independent synthesis, leading to the development of

many optimization methods for this metric [28]. As logic synthesis evolved and integrated

circuits became larger and more complex, scalability emerged as a crucial issue. This led to the

adoption of and-inverter graphs (AIGs) [75, 97], consisting of 2-input AND gates and inverters,

and and-or-inverter graphs (AOIGs), consisting of 2-input AND gates, 2-input OR gates, and

4

1.2 Research Motivation

inverters, as the most common technology-independent representations. The gate count

and levels of logic became the most common metrics for area and performance, respectively.

These abstractions focus on technology-independent logic synthesis prior to technology

mapping. After technology mapping, circuits are represented as logic networks of library cells,

providing a more accurate and technology-dependent area and delay estimations. Technology

mapping also addresses optimization problems. It translates a technology-independent circuit

representation into an interconnection of library cells corresponding to a technology while

minimizing cost metrics, such as area under delay constraints.

This thesis primarily addresses the technology mapping problem, with a secondary focus

on logic synthesis. Throughout this thesis, we present advanced technology mapping algo-

rithms for field-programmable gate arrays (FPGAs), standard-cell-based designs (including

general-purpose processors and application-specific integrated circuits), and superconducting

electronics (SCE). Since these technologies have distinct libraries of gates and constraints, com-

petitive technology mapping algorithms necessitate specialized approaches. Additionally, we

investigate technology-independent logic optimization with methods inspired by technology

mapping and physical implementations in various technologies.

1.2 Research Motivation

Over the past few decades, integrated circuits have undergone remarkable advancements in

complexity and performance, a trend required to continue to drive future innovations in many

applications, such as high-performance computing, artificial intelligence, and low-power

devices, and in various fields, such as weather forecasting and computational chemistry. How-

ever, as CMOS technology faces numerous challenges in further downscaling the transistor

dimensions, now at 2 nanometers, EDA tools become increasingly more important for sustain-

ing this progress. Additionally, extremely high manufacturing costs at the latest technology

nodes significantly motivate EDA solutions for area minimization, which has often been

overshadowed by the focus on performance. Furthermore, emerging technologies are demon-

strating advantages in power efficiency and performance, positioning themselves as potential

future alternatives to CMOS. However, the scope of these emerging nanotechnologies remains

limited. Due to differing technological constraints and physical properties, existing EDA tools

for CMOS are often not well-suited for these new technologies, necessitating the development

of specialized synthesis techniques. Nowadays, the development of novel synthesis techniques

is highly important.

This thesis investigates advanced logic synthesis algorithms to address these challenges.

We first discuss research motivations related to conventional CMOS technologies in Sec-

tion 1.2.1. Subsequently, we continue with EDA applications for superconducting electronics

as a potential post-silicon technology in Section 1.2.2.

5

Chapter 1 . Introduction

1.2.1 Conventional CMOS Technologies

CMOS is the most advanced technology for integrated circuits. Despite the physical scaling

limitations and the gradual slowdown of Moore’s Law, CMOS-based chips maintain a signifi-

cant lead over emerging technologies in terms of scalability, cost-effectiveness, and maturity

of the manufacturing process. Moreover, ongoing research and development efforts continue

to push the boundaries of CMOS technology to its limit. However, numerous challenges in

further downscaling the transistor dimensions require increased efforts in researching novel

EDA techniques to achieve better quality of results (QoR).

Modern microelectronic circuits typically comply with two design styles based on the

target implementation, namely standard-cell-based design and field-programmable gate ar-

rays (FPGA). In this thesis, we address both.

Standard-cell-based design

Standard-cell design is a semi-custom design methodology based on standard cells for dense

and efficient integrating circuits, including general-purpose processors and application-

specific integrated circuits (ASICs), such as GPUs. Standard cells are pre-designed, pre-

characterized blocks of transistors configured to perform specific logic functions and serve as

the fundamental building blocks for creating complex integrated circuits. Utilizing standard

cells offers multiple key advantages. They increase the level of abstraction in the design flow,

eliminating the need to design complex circuits at the transistor level, which enables tools

to manage billions of transistors and synthesize circuits in a reasonable time. Moreover, the

design flow becomes more versatile and capable of operating across various fabrication tech-

nologies and design rules. Standard cells also facilitate efficient design synthesis, placement,

and routing by allowing automated tools to leverage pre-characterized data to optimize and

compute power, performance, and area.

Traditional logic synthesis for standard-cell-based design was mainly based on NAND-

NOR (AND-OR) primitives because they closely abstract simple gates realizable in CMOS

technology. In the last decade, other data structures incorporating XORs, multiplexers, and

majorities have demonstrated remarkable results in leveraging new optimization opportuni-

ties [5, 9, 145]. This led to the development of novel algebraic and Boolean techniques. The

ongoing research for logic synthesis methods continues to uncover new opportunities, but

many remain unexplored.

Technology mapping for standard-cell-based designs is the phase in which a synthesized

logic network is transformed into an interconnection of standard cells. This process is formu-

lated as an optimization problem, with optimum-cost technology mapping classified as an

NP-hard problem. Furthermore, mapping includes many sub-problems, such as matching,

covering, gate sizing, buffering, etc. In Chapter 4, our focus is primarily on the sub-problems

of matching and covering, which are essential for achieving efficient and effective technology

6

1.2 Research Motivation

mapping. Generally, technology mapping is crucial for good QoR. Consequently, it is impor-

tant to research and develop algorithms to further improve area, delay, power consumption,

and mapping runtime.

In addition to the technology mapping problem itself, the physical downscaling limitations

of transistors have led to the evolution of standard cell libraries to be more comprehensive.

Consequently, technology mapping needs to evolve to better leverage these advanced libraries.

Field-programmable gate arrays

Field-Programmable Gate Arrays (FPGAs) are integrated circuits with configurable logic blocks

(CLBs) and programmable interconnect. Unlike standard-cell-based designs, which fol-

low a semi-custom design methodology and have a fixed configuration, FPGAs can be pro-

grammed many times after manufacturing. This flexibility comes at the cost of lower power-

performance-area (PPA) efficiency. Nevertheless, FPGAs offer sufficient speed for various

applications, including rapid prototyping, low to medium-volume products, custom hardware

accelerators, telecommunications equipment, and applications requiring frequent updates

or feature enhancements. Furthermore, FPGAs offer lower initial production costs due to

the absence of non-recurring engineering (NRE) expenses, even if their per-unit costs remain

relatively high regardless of volume.

The EDA flow for FPGA designs consists of modeling hardware designs to make them run

efficiently on FPGA architectures. EDA design flows for FPGAs share similarities with those for

standard-cell-based design, but they focus on using configurable logic blocks to implement

logic operations and programmable switch boxes and routing channels for interconnects.

EDA for FPGA design researches new solutions to improve performance and scalability in

two directions: (i) by improving the FPGA architecture; and (ii) by enhancing the tools. In the

former case, architectural improvements in FPGAs aim to reduce the implementation cost,

in PPA metric, of generic or specific classes of designs. For instance, modern architectures

include higher-level functionality fixed in silicon, such as digital signal processor (DSP) blocks

to accelerate signal processing applications. Furthermore, updates to the configurable logic

blocks (CLBs) and their interconnections can significantly enhance performance. A recent

innovation by FPGA vendors involves supplementing programmable interconnects with fast,

non-routable connections between LUTs to reduce the interconnect delay. In the latter

case, tools must continually evolve to support new FPGA architectures and fully exploit their

capabilities. This involves not only keeping pace with architectural innovations but also

rethinking existing problems with modern techniques to unlock significant improvements.

In the logic synthesis phase, the main logic primitive implemented in CLBs is the k-input

lookup table (LUT), which functions like a memory and can realize any k-input Boolean

function. Typically, FPGAs feature LUTs with 6 or 4 inputs. The technology mapping problem

involves the transformation of a synthesized logic network into an interconnection of LUTs.

As for technology mapping for standard cells, this process is formulated as an optimization

7

Chapter 1 . Introduction

problem, with optimum-cost technology mapping being classified as an NP-hard problem.

In Chapter 3, we address the technology mapping problem for designs meant to run on

FPGAs (LUT mapping). We propose efficient Boolean decomposition techniques integrated

into a structural mapper to enhance circuit performance. Additionally, we introduce a method

to leverage non-routable connections between LUTs in recent FPGAs, further optimizing for

performance.

1.2.2 Superconducting Electronics

The increasing interest in superconducting electronics (SCE) is related to the search for a

computing technology that could match or surpass the current performance of CMOS while

achieving lower energy consumption. Among the various emerging nanotechnologies intro-

duced over the past few decades, SCE has demonstrated a considerable level of maturity, with

several examples of medium-size processors already realized [2, 11, 14, 148]. SCE works at

temperatures near absolute zero (typically at 4K), where resistive effects can be neglected,

and uses Josephson junctions (JJs) as switching elements. SCE systems can achieve up to 100

times lower operating power, including refrigeration power, and 1-100 times higher clock

frequencies than CMOS [78, 89]. More complex circuits have demonstrated clock frequencies

between 1 to 10 times those of conventional CMOS [11, 14, 148]. The two main logic families

of SCE are the single-flux quantum (SFQ) [119] and the adiabatic quantum-flux parametron

(AQFP) [191].

Despite successful applications, the scope of SCE applications remains narrow compared

to its potential. Conventional EDA tools for CMOS are not well-suited for SCE due to funda-

mental differences between the two technologies. One key difference is the unique nature

of representing zeros and ones. SFQ uses the presence or absence of a voltage pulse, while

AQFP uses the current direction. To distinguish logic zero from logic one, the evaluation at

each gate is triggered by a clock signal. Consequently, data at a gate’s inputs must be available

in specific timeframes for the computation to be correct. This often requires to use delaying

registers on certain circuit paths. In literature, this problem is referred to as path balancing.

Another major difference is the poor driving capacity of SCE gates, due to the small currents

involved. This limitation requires the addition of special gates called splitters to the logic,

which distribute signals to multiple destinations without degrading the signal integrity. In

literature, this problem is referred to as fan-out branching. The number of delaying registers

required for path balancing and splitters can be prohibitively large, often contributing to 50%

of the total area and energy consumption [13, 35, 88, 148]. This significantly degrades the

efficiency and yield of superconducting integrated systems.

These complications necessitate the development of EDA tools tailored for SCE. Current

EDA tools for superconducting electronics can handle only limited-scale designs with less

than a million cells and often require manual intervention. Additionally, optimization meth-

ods for SCE often come from a straightforward adaptation of CMOS techniques, which are

8

1.3 Thesis Contributions

not fully suited to the unique requirements of SCE. Significant progress can be made in de-

sign optimization. Logic synthesis for SCE demands modern abstractions and optimization

methods. For example, AQFP logic is majority-based, while SFQ logic efficiently implements

XORs. Furthermore, the technology mapping problem for these technologies is particularly

challenging, as it must address path balancing and fan-out branching requirements.

1.3 Thesis Contributions

This thesis focuses on logic synthesis and, more specifically, on technology mapping algo-

rithms for conventional CMOS technologies and superconducting electronics. In this section,

our contributions are classified according to the underlying technology. First, we present our

contributions to technology mapping for CMOS, targeting the two main types of semiconduc-

tor devices, namely field-programmable gate arrays (FPGAs) and standard-cell-based designs.

Then, we introduce our contributions to technology-independent logic synthesis. Finally, we

present our contributions in logic synthesis and technology mapping for superconducting

electronics (SCE). For ease of reading, our achievements are presented in the same order they

appear in the chapters of the thesis.

1.3.1 Technology Mapping

We develop novel technology mapping techniques to improve the quality of CMOS-based

designs. The contributions are classified based on the target technology. We first present our

contributions for field-programmable gate array (FPGA)-based designs to later transition to

standard cell-based designs.

Field-programmable gate array design flow

We study novel technology mapping algorithms to enhance the performance of designs meant

to run on FPGAs. First, we propose techniques to efficiently decompose Boolean functions

into a flexible number of k-input LUTs. Second, we propose an advanced performance-driven

technology mapping algorithm that integrates Boolean decomposition on the fly. Finally, we

present a technology mapper that leverages non-routable LUT connections available in FPGAs

to optimize for performance.

State-of-the-art technology mapping into LUTs is performed through local substitutions

applied to an initial graph representation derived by technology-independent logic synthesis.

The drawback of this approach is that the technology-independent optimization step and the

technology mapping step are separated. Consequently, the impact of optimization on the

quality of the final LUT network is hard to predict before mapping. Specifically, the structure

of the subject graph highly influences the mapping quality. This is known as structural bias. To

mitigate structural bias, the known methods compute structural choices for the subject graph

9

Chapter 1 . Introduction

and use them during mapping [37, 114], or collapse and decompose parts of the graph during

mapping [41, 60, 112]. However, exact area and delay optimization during LUT mapping

remain NP-hard [46, 124].

Our contributions focus on developing advanced techniques to mitigate the structural

bias during LUT mapping. We first study the Ashenhurst-Curtis decomposition (ACD) [12, 49],

also known as Roth-Karp decomposition [170], which is the most generic Boolean decompo-

sition formulation. Current state-of-the-art ACD techniques suffer from slow run times or

limited performance due to constraints aimed at reducing the complexity. We address these

limitations by proposing a revised formulation of ACD for LUT mappers and post-mapping

resynthesis engines that perform delay optimization. We provide algorithms to minimize

the decomposition cost in terms of the number of LUTs, edges, and delay, considering in-

put arrival times. Then, we present a delay-driven LUT mapping algorithm that integrates

ACD on the fly to reduce the structural bias. To our knowledge, this is the first practical and

scalable work using ACD for delay-driven LUT mapping. We demonstrate remarkable improve-

ments in performance compared to state-of-the-art LUT mapping. Additionally, we focus on

methods to leverage non-routable connections between LUTs, forming LUT structures, in

modern FPGA [10]. These connections reduce the need for signal routing through multiple

switch boxes and routing channels. However, placement algorithms struggle to utilize these

connections effectively for delay optimization. We address this problem during technology

mapping by using our ACD formulation to extract decompositions into LUT structures. We

show significant improvements compared to previous approaches.

Standard cell design flow

We study methods to improve technology mapping for standard-cell-based design. We propose

novel matching techniques to increase the support of large and multiple-output cells during

mapping. Then, we present covering algorithms to achieve better QoR and support multiple-

output cells.

Standard cells define a set of pre-designed and pre-characterized logic primitives that are

used as building blocks to create digital circuits. The problem of optimally mapping Boolean

functions to standard cells is known to be intractable. Therefore, technology mapping is

generally formulated as a series of local substitutions applied to a simple multi-level graph

representation obtained from technology-independent logic synthesis. Given the complexity

of the technology mapping problem, numerous heuristics and solutions have been proposed

in the literature to address delay and area optimization (possibly under delay constraints) [37,

38, 65, 79, 84, 87, 90, 98, 114, 123, 146, 186]. All these works focus on technology mapping for

single-output cells. Mapping mainly addresses two sub-problems: matching and covering.

Matching involves associating sections of the subject graph with a list of cells that are func-

tionally equivalent and capable of implementing those sections. Covering selects appropriate

cells to cover the graph, such that the target cost function is minimized.

10

1.3 Thesis Contributions

Our contribution introduces novel techniques to enhance the quality of results achievable

by technology mappers, with a primary focus on area optimization. We begin by investigating

the matching problem during technology mapping. Current state-of-the-art techniques often

face a trade-off between matching quality and support for large cells. To overcome this limi-

tation, we propose a fast matching approach that combines pattern matching and Boolean

matching, yielding significant improvements in both area and runtime compared to existing

methods. Next, we focus on supporting multiple-output library cells during technology map-

ping. We present innovative techniques for detecting and matching multiple-output cells,

and we introduce the first technology mapping algorithm that fully integrates support for

multiple-output cells. This advancement enables more efficient utilization of available stan-

dard cells and further optimizes area. We also revisit heuristic algorithms for covering, aiming

to achieve better area optimization under delay constraints. Overall, our contributions offer

significant advancements in technology mapping, particularly in terms of area optimization,

by addressing key limitations in matching quality, multiple-output cell support, and covering

algorithms.

1.3.2 Mapping for Logic Synthesis

We investigate methods to improve technology-independent logic synthesis. We propose

algorithms influenced by technology mapping to optimize and convert logic in various rep-

resentations. Then, we develop methods to efficiently leverage don’t care conditions during

logic rewriting in various representations. Finally, we revisit AIG-based logic optimization

for factored form literals, with applications in standard cell design flows and transistor-level

synthesis.

Modern state-of-the-art logic synthesis tools leverage multiple homogeneous logic net-

works for the representation, manipulation, and optimization of logic. Homogeneous logic

networks are directed acyclic graphs that use restrictions on the type of Boolean functions and

fan-in of logic blocks. The and-inverter graph (AIG) [75, 97], consisting of 2-input AND gates

and inverters, is the most common representation. The majority-inverter graph (MIG) [5, 6],

consisting of 3-input majority gates and inverters, has shown to further unlock optimization

opportunities in arithmetic-intensive designs. Furthermore, many emerging nanotechnolo-

gies are majority-based and benefit from majority-based logic optimization (e.g., AQFP [191],

QDCA [116], and spin-wave devices [91]). Other examples of useful homogeneous logic

networks include the xor-and graphs (XAGs) [72] and xor-majority graphs (XMGs) [68], for

their compactness and efficiency in arithmetic-intensive designs. XAGs are also the natural

abstraction for emerging nanotechnologies, and cryptography or security applications.

Our contribution focuses primarily on optimization for homogeneous logic networks.

Since multiple graph representations are available to support logic synthesis for conventional

and emerging nanotechnologies, we first propose a versatile technique called graph mapping

to convert a homogeneous logic network into another while performing global Boolean

11

Chapter 1 . Introduction

optimization. When the destination representation matches the starting one, graph mapping

performs logic rewriting. This approach facilitates the use of multiple logic representations

in logic synthesis and their conversion. Furthermore, it provides a valuable optimization

technique for less mature graph representations, such as MIGs and XMG. This method has

been demonstrated to be one of the most effective logic optimization approaches over MIGs,

XAGs, and XMGs. Then, we study how to leverage Boolean don’t care conditions in logic

rewriting. We provide scalable Boolean matching algorithms to achieve local size-optimum

results for incompletely specified Boolean functions extracted during rewriting and graph

mapping. Finally, we focus on factored form literal count (FFLC) optimization, a traditional

cost function used to drive area optimization in networks of sum-of-products (SOPs). FFLC

is a critical metric as it correlates strongly with the number of transistors required in CMOS

implementation. We present a comprehensive set of algebraic and Boolean methods to

optimize for FFLC directly on the AIG. The applications of FFLC optimization are twofold:

it can enhance a standard-cell design flow, and it is applicable in transistor-level synthesis

and auto-creation of custom standard cells, as FFLC closely approximates transistor count.

This latter project is the result of an internship at Google LLC (X division), which led to the

publication [200] and patents [203, 213].

1.3.3 Synthesis for Superconducting Electronics

We research logic synthesis techniques tailored for the two main logic families of supercon-

ducting electronics (SCE), namely the adiabatic quantum-flux parametron (AQFP) and the

single-flux quantum (SFQ). First, we consider the technology mapping problem for AQFP in-

volving the path-balancing and fan-out-branching requirements. We propose a depth-optimal

technology mapping algorithm and a post-mapping area-oriented optimization method. Sec-

ond, we describe the synthesis problem for SFQ over the primitives AND and XOR and propose

an automatic logic synthesis toolbox.

Due to the path-balancing and fan-out-branching requirements, technology mapping for

SCE needs to insert delay registers and splitters. The number of delaying registers required for

path balancing and the number of splitters can be prohibitively large, often contributing to 50%

of the total area and energy consumption [13, 35, 88, 148]. Existing work considered reducing

imbalances and high-fan-outs during logic optimization as a proxy for reducing the path-

balancing and fan-out-branching costs [33, 126, 158, 204]. Other previous work developed

techniques to insert and minimize delay registers and splitters after logic synthesis [35, 80, 88,

107]. A key distinction characterizes the path-balancing and fan-out-branching requirement

between AQFP and SFQ technologies. In AQFP, splitters are clocked and considered in path

balancing, so path balancing and fan-out branching have to be addressed together. The

interplay between buffers and splitters makes the optimization of delay registers and splitters

for AQFP a challenging problem. Conversely, in SFQ, splitters are not clocked, thus the

two constraints can be considered separately, thereby simplifying the technology mapping

problem.

12

1.4 Thesis Organization

Our contributions focus on minimizing the area and power overhead derived from path-

balancing and fan-out-branching requirements. First, we propose technology mapping algo-

rithms to satisfy the technological constraints of AQFP circuits, addressing the buffer (delay

register for AQFP) and splitter (B/S) insertion problem. We prove that the depth-optimal B/S

insertion problem is tractable with polynomial complexity, and we provide two depth-optimal

algorithms based on the as-late-as-possible (ALAP) and as-soon-as-possible (ASAP) strategies.

Following this, we present a post-mapping area-oriented B/S optimization algorithm based on

minimum-register retiming. Finally, we develop a logic synthesis framework for SFQ. We focus

on delay optimization, which is key to synthesizing efficient SFQ circuits. Optimization is

carried out on an XAG representation. We present multiple algebraic and Boolean techniques,

and we demonstrate how to efficiently perform technology mapping for SFQ.

1.4 Thesis Organization

The goal of this thesis is to develop and enhance technology mapping algorithms for multiple

technologies and, more broadly, for logic synthesis. Each technology presents unique con-

straints and requires specialized techniques, which are addressed in different chapters of this

thesis. This thesis is organized as follows:

• Chapter 2 - Background: This chapter introduces the necessary background needed

to understand the thesis. It provides an overview of state-of-the-art data structures

and algorithms used in logic synthesis, along with a discussion of various algebraic,

Boolean, and exact optimization methods. Additionally, it introduces the benchmark

suites employed throughout the thesis for the experimental evaluation of the proposed

algorithms.

• Chapter 3 - Technology Mapping for FPGAs: This chapter presents algorithms to im-

prove performance-driven technology mapping for FPGAs. Specifically, this chapter pro-

poses: (i) practical algorithms for generic Boolean decomposition of functions into LUTs;

(ii) an advanced delay-driven technology mapping algorithm that integrates Boolean

decomposition to reduce the structural bias; (iii) a technology mapper that leverages

non-routable connections in FPGAs to reduce the worst-case delay. We demonstrate

that our Boolean decomposition method outperforms the state-of-the-art techniques

in generality, decomposition success, quality, and run time. We show that our LUT

mapping algorithm with Boolean decomposition achieves a significant 12.39% average

depth reduction and 2.20% average area reduction compared to the state of the art.

Additionally, we demonstrate remarkable results in performance-driven technology

mapping leveraging non-routable LUT connections.

• Chapter 4 - Technology Mapping for Standard Cells: This chapter focuses on meth-

ods to improve the quality of technology mapping for standard cells. Specifically, this

chapter proposes: (i) a novel technique to perform high-quality and scalable matching;

13

Chapter 1 . Introduction

(ii) algorithms for technology mapping using multiple-output cells; (iii) advanced tech-

nology mapping covering algorithms; and (iv) a technology mapper that integrates the

techniques discussed in the chapter. We present the first technology mapper that can

support multiple-output cells. We demonstrate remarkable results, especially in area

reduction, before and after buffering and gate sizing.

• Chapter 5 - Mapping for Logic Synthesis: This chapter studies how approaches similar

to technology mapping and innovations in logic rewriting can enhance technology-

independent logic synthesis. Specifically, it presents: (i) a versatile mapping approach

for graph mapping and logic rewriting of technology-independent graph representa-

tions; (ii) algorithms to efficiently leverage don’t care conditions in graph mapping

and logic rewriting; (iii) novel methods to optimize the factored form literal count in

large multi-level Boolean networks, with applications in standard-cell design flows and

transistor-level synthesis. For graph mapping and logic rewriting, we developed a versa-

tile technique that can map from and to various logic network representations. Addition-

ally, we present a global logic rewriting technique based on mapping with significant

results in optimization over xor-and graphs (XAGs), majority-inverter graphs (MIGs),

and xor-majority graphs (XMGs). The latter topic investigates AIG-based optimization

of the number of factored form literals, traditionally used as a cost function for synthesis

due to its correlation with the number of transistors needed to implement a circuit in

CMOS technology. We show remarkable results in standard-cell design flows and discuss

applications in transistor-level synthesis and standard-cell design.

• Chapter 6 - Specializing Synthesis for Superconducting Technologies: This chapter

focuses on logic synthesis and technology mapping techniques specialized for super-

conducting electronics. We introduce the two most mature logic families, namely the

single-flux quantum (SFQ) and the adiabatic quantum-flux parametron (AQFP). We

discuss the technological constraints and differences compared to CMOS that make the

synthesis for these logic families challenging. Specifically, we present: (i) depth-optimal

technology mapping algorithms for AQFP circuits; (ii) a post-mapping optimization

algorithm for AQFP circuits based on minimum-register retiming; (iii) a logic synthesis

and technology mapping framework for SFQ circuits based on the xor-and graph (XAG).

In the first part, we proposed the first technology mapping algorithm for AQFP with

depth optimality guarantees. We demonstrate significant results in AQFP mapping

and scalability to designs that are 10 to 100 times larger than those any related work

could handle. In the second part, we propose a synthesis flow for SFQ over the xor-and

graph (XAG) representation. We show remarkable results in area and delay reduction

compared to the state of the art.

• Chapter 7 - Conclusions: This chapter concludes the thesis. We summarize the research

accomplishments and present the remaining challenging problems related to the topics

of this thesis.

14

2 Background

This thesis focuses on developing algorithms and data structures for the logic synthesis of

established and emerging technologies. This chapter serves as the preliminary background

for the entire thesis and provides a comprehensive overview of key concepts in logic synthesis.

First, we introduce the most common Boolean operations based on Boolean algebra. Then,

we discuss data structures to represent Boolean logic. These include truth tables, binary

decision diagrams, two-level representations, and multi-level Boolean networks. Next, we

describe methods to extract circuit sub-networks, which are at the core of technology mapping

and run-time-intensive algorithms, such as Boolean resubstitution, which often requires a

peephole optimization approach. Then, we review matching techniques, which are essential

in technology mappers and many logic optimization methods. Subsequently, we present the

principal algorithms at the base of logic optimization. This includes a variety of methods,

usually classified into algebraic and Boolean methods. Finally, we introduce the benchmark

suites used throughout the thesis for the experimental evaluation of the proposed algorithms.

2.1 Boolean Algebra

A Boolean function is a mapping from a k-dimensional Boolean space Bk = {0,1}k into a

1-dimensional one: Bk → B. A multiple-output Boolean function is mapping from a k-

dimensional Boolean space into a m-dimensional one Bk → Bm . Multiple-output Boolean

function can be seen as an array of m Boolean functions over the same domain.

This definition refers to the completely specified Boolean function. An incompletely specified

Boolean function is defined over a subset of Bk . The points were the function is not defined are

called don’t care conditions. Don’t care conditions arise when input combinations never occur

(controllability conditions) or when output value do not matter for some input combinations

(observability conditions). Don’t care conditions may emerge when a Boolean function is a

part of a larger system, such a Boolean networks, and are crucial in logic synthesis because they

offer additional flexibility when performing Boolean simplification. Typically, incompletely

specified Boolean functions are define as a mapping from Bk → {0,1,∗}, where ∗ denotes a

15

Chapter 2 . Background

don’t care condition.

The positive cofactor of a Boolean function f (x0, . . . , xi , . . . , xk−1) with respect to a variable

xi , represented as fxi , is the Boolean function obtained by setting xi = 1. Similarly, the negative

cofactor f x̄i is the Boolean function obtained by setting xi = 0.

The Boolean difference of a Boolean function f (x0, . . . , xi , . . . , xk−1) is ∂ f
∂xi

= fxi ⊕ f x̄i . This

operator reveals whether f is sensitive to a change in value of input xi .

The Boole’s expansion of a function f , often called Shannon’s expansion or Shannon’s

decomposition, states that:

f (x0, . . . , xi , . . . , xk−1) = xi fxi + x̄i f x̄i . (2.1)

Alternatively, the Boole’s expansion can be expressed as f (x0, . . . , xi , . . . , xk−1) = xi fxi ⊕ x̄i f x̄i .

The positive Reed-Muller expansion, or positive Davio expansion, states that:

f (x0, . . . , xi , . . . , xk−1) = f x̄i ⊕xi
∂ f

∂xi
. (2.2)

Similarly, the negative Reed-Muller expansion, or negative Davio expansion, states that:

f (x0, . . . , xi , . . . , xk−1) = fxi ⊕ x̄i
∂ f

∂xi
. (2.3)

A completely specified Boolean function f essentially depends on a variable xi if there

exists an input combination, such that the value of the function changes when the variable is

toggled, i.e., ∂ f
∂xi

= 1. The support of f is the set of all variables on which function f essentially

depends.

In the following, we assume that the reader is familiar with other basic concepts on Boolean

algebra and Boolean operations. We refer the reader to [31, 52, 71] for further background.

2.2 Data Structures

Logic representations are key for developing robust EDA tools. They enable compact data

storage in memory and efficient implementation of optimization algorithms. The choice of

the most suitable data structure depends on the complexity and size of the problem being

represented, as well as on the specific operations to be performed on the data. Over the years,

numerous data structures have been proposed to enhance the efficiency and effectiveness of

logic synthesis. Each data structure offers unique advantages and is tailored for specific types

of operations, such as logic simplification, equivalence checking, or data extraction. In this

section, we provide an overview of the principal data structures for logic synthesis and their

applications.

16

2.2 Data Structures

2.2.1 Truth Tables

A truth table representation of a k-input Boolean function f : {0,1}k → {0,1} can be encoded as

a bit string b = b2k−1b2k−2 . . .b0, i.e., a sequence of bits, of length 2k . A bit bi ∈ {0,1} at position

0 ≤ i < 2k is equal to the value taken by f under the input assignment x⃗ = (x0, . . . , xk−1) where

2k−1 · xk−1 +2k−2 · xk−2 +·· ·+20 · x0 = i . (2.4)

Example 2.2.1. The truth table of a 3-input AND f (x0, x1, x2) = x0 ∧x1 ∧x2 is 10000000. Typ-

ically, truth tables are represented using the hexadecimal notation to reduce the size of the

representation by a factor of 4 (i.e., an hexadecimal digit represents 4 bits). For the 3-input AND

function, the hexadecimal truth table is 0x80. ▲

The truth table is a canonical representation, meaning that it is unique. As a result, it can

efficiently verify the Boolean equivalence of two functions (theoretically in constant time),

provided that truth tables can be derived from them.

Commonly, a truth table representation is effective for representing up to 16-input func-

tions. Beyond this value, the exponential growth in size hinders its practical utility. In a 64-bit

machine, truth tables for functions up to 6 inputs fit into one machine word. Larger truth

tables are typically represented as vectors (or arrays) of 2k−6 machine words.

It is common to refer to the leftmost input column of a truth table as the most significant

variable (xk−1) and the rightmost input column as the least significant variable (x0). A swap

of two variables alters the truth table by exchanging the location of the corresponding two-

variable cofactors.

Example 2.2.2. The Boolean implication function x1 → x0 = x̄1 ∨ x0, represented in binary

format as 1011, changes to 1101 after the variable swap. ▲

Figure 2.1 depicts two truth tables represented as bit strings, one in binary and one in

hexadecimal. Notably, the rightmost truth table can be derived from the leftmost one by

swapping variables x0 and x2. Marked next to both truth tables are the cofactors with respect

to two most significant variables.

A truth table t1 is said to imply, or cover, another truth table t2 if each bit of t1 is true also

in t2. This relationship is denoted as t1 ≤ t2. Similarly, t2 is said to be implied by t1, denoted as

t2 ≥ t1. For instance, 1000 ≤ 1001.

2.2.2 Two-level Representations

Boolean functions can be represented by expressions of literals linked by the AND (∧ or ·) and

OR (∨ or +) operations. Note that the AND operator · can be omitted. Generally, the level of a

representation refers to the number of operators applied to two or more arguments.

17

Chapter 2 . Background

x2 x1 x0 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

f = 10110101

f x̄1 x̄2

fx1 x̄2

f x̄1x2

fx1x2

x0 ↔ x2 x0 x1 x2 f
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

f = 0xA7

f x̄0 x̄1

f x̄0x1

fx0 x̄1

fx0x1

Figure 2.1: Truth table representation in the classical tabular form and as bit string (binary
and hexadecimal), cofactor extraction w.r.t. the two most significant variables, and variable
swapping of x0 with x2.

One of the first representations of Boolean logic was the sum-of-products (SOP) [28], also

referred to as disjunctive normal form (DNF). An SOP is a two-level representation consisting

of the logic OR (disjunction) of product terms, which are logic ANDs (conjunction) of literals

(variables or their complements). This representation was originally motivated in EDA by

programmable logic arrays (PLAs) whose primitives are modeled directly using SOPs. Because

of the simple structure of a two-level circuit, the optimization problems for SOPs are well

understood, which led to the development of efficient heuristic and exact minimization

methods, such as espresso [171].

Another representation is the product-of-sums (POS), also referred to as conjunctive normal

form (CNF). POSs can be seen as the dual of SOPs, and consist of the logic AND (conjunction)

of sum terms, which are logic ORs (disconjunction) of literals. CNFs play a central role in

Boolean satisfiability solving [93].

Example 2.2.3. Let us consider the majority-of-3 function. It can be expressed as a sum-of-

products f (a,b,c) = ab+ac +bc and as a product-of-sums f (a,b,c) = (a+b)(a+c)(b+c). ▲

An additional useful two-level representation is the exclusive sum-of-products (ESOP),

which replaces the OR operator with a XOR operator (⊕). For many Boolean functions, the

number of cubes in minimal ESOPs is lower than the number of cubes in minimal SOPs [175].

ESOPs play an important role in applications where the XOR operator is particularly efficient,

such as in emerging technologies (see, e.g., [50, 194]), quantum computing (see, e.g., [130]),

and cryptography applications (see, e.g., [205, 219]).

2.2.3 Binary Decision Diagrams

The binary decision diagram (BDD) [1, 102] is one of the most common logic representation

of Boolean functions. The BDD is a directed-acyclic graph based on the if-then-else operator.

Each node in a BDD is associated with a variable xi and implements a cofactoring step

resulting in a Shannon expansion, i.e., f = xi fxi + x̄i f x̄i . Hence, each node is connected to two

18

2.2 Data Structures

x0

f

x1

x2

0 1

0

1

0

1
0 1

Figure 2.2: BDD (reduced and ordered) for the function x0(x1 +x2).

other nodes whose functions represent cofactors of the given function. The root of a BDD is

a node representing the given function, and the leaves are constant functions true and false.

The term BDD typically refers to reduced ordered BDD (ROBDD) [32], which is a canonical

representation for a given variable order and a set of reduction rules.

Example 2.2.4. Figure 2.2 shows the BDD for the function x0(x1 +x2). Solid and dashed edges,

along with the one or zero weights, represent the positive and negative cofactors, respectively. ▲

BDDs are particularly useful for representing medium-size Boolean functions. Thanks, to

reduction rules, the BDD size can be minimized during its construction by merging equivalent

cofactors. An important factor controlling the size of a BDD is the variable ordering. For

instance, adder functions are sensible to the variable ordering and the corresponding BDD has

exponential size in the worst case and linear size in the best case, with respect to the number

of variables. Exact [55] and multiple heuristic [63] algorithms have been proposed to minimize

the size of a BDD searching for a good ordering. Although, in the worst-case scenario the BDD

size is exponential, for many practical functions BDDs remains compact, scaling considerably

better than truth tables. For instance, the BDD of the parity function (i.e., multiple-input

XOR) grows linearly in size compared to the number of input variables. When the size of the

BDD becomes too large, the function is decomposed into logic blocks and represented as a

multi-level Boolean network.

Nowadays, BDDs are typically implemented using complemented edges to reduce their

memory usage. The complementation of an edge takes constant time and may reduce the

number of BDD nodes. To preserve the canonicity, BDDs with complemented edges can only

complement the zero-cofactor edges and have a single terminal node implementing logic 1.

Example 2.2.5. Figure 2.3 shows two BDDs for the function x0(x1 + x2)+ x̄0x̄1x̄2. The one

on the left does not use complemented edges. The one on the right uses complemented edges,

which are represented by circles on the zero-cofactor edges. This example shows how BDDs with

19

Chapter 2 . Background

x0

f

x1

x2

0 1

x1

x2

(a) Without complemented edges

x0

f

x1

x2

1

(b) With complemented edges

Figure 2.3: BDD (reduced and ordered) with and without complemented edges for the function
x0(x1 +x2)+ x̄0x̄1x̄2.

complemented edges may reduce the number of required BDD nodes. ▲

Besides the traditional BDD based on Shannon expansion, multiple other variations

have been proposed, such as ZDDs [131] for an efficient manipulation of combinatorial

problems, ADDs [15] to symbolically represent Boolean functions whose codomain is a finite

set of constants, and BBDDs [4] that use the biconditional expansion instead of the Shannon

expansion.

2.2.4 Multi-level Logic Networks

A multi-level logic network is an interconnection of logic blocks modeled as a directed acyclic

graph (DAG), having nodes associated with Boolean functions. Generally, multi-level circuits

for both standard-cell and FPGA design tend to be much smaller, power efficient, and faster,

compared to the two-level counterparts. The sources of the graph are the primary inputs (PIs),

the sinks are the primary outputs (POs). For any node n, the fan-ins of n is a set of nodes

driving n, i.e. nodes that have an outgoing edge towards n. Similarly, the fan-outs of n is a set

of nodes driven by node n, i.e., nodes that have an incoming edge from n. If there is a path

from node a to node b, then a is in the transitive fan-in (TFI) of b, and b is said to be in the

transitive fan-out (TFO) of a. The transitive fan-in of b includes node b and the nodes in its

transitive fan-in, including the PIs. The transitive fan-out of b includes b and all the nodes in

its transitive fan-out including the POs. Note that logic networks can be extended to represent

sequential circuits. In this thesis, we focus on combinational circuits.

A natural extension of SOPs into a multi-level representation are factored forms [28]. A

factored form is defined recursively as follows. A literal is a factored form, and the logic OR or

20

2.3 Cuts and Partitions

logic AND of two factored forms is a factored form. Informally, a factored form is an SOP whose

inputs are other SOPs, etc. Factored forms are an interesting type of multi-level representation

because they efficiently abstract CMOS transistor networks composed of transistors connected

in series and in parallel. Moreover, they provide a method to reduce the number of literals of a

SOP.

Example 2.2.6. A sum-of-products ab + ac + ad + cbd can be extended to factored form by

sharing the literal a among multiple cubes, obtaining a(b + c +d)+ cbd. ▲

Logic synthesis often uses homogeneous logic networks to represent Boolean circuits,

which use restrictions on the type of Boolean functions and fan-in of logic blocks. Using a

small set of primitives makes DAGs easy to manipulate, for example, through algebraic rules,

and improves the memory efficiency. Originally, 2-input NANDs and NORs, together with

inverters, were used as primitives in graph representations thanks to their universality. As logic

synthesis evolved, the and-inverter graph (AIG) [75, 97], consisting of 2-input AND gates and

inverters, became the most common technology-independent representation. Other practical

graph representations are the majority-inverter graph (MIG) [5, 6], using 3-input majority

and inverters, the and-xor graph (XAG) [72] (often called and-xor-inverter graph (XAIG)),

using 2-input AND, 2-input XOR, and inverters, and the xor-majority graph (XMG) [68], using

3-input majority, 3-input XORs, and inverters. A k-LUT network is a logic network used in

FPGA designs and composed of k-input lookup tables (k-LUTs), capable of realizing any k-

input Boolean function. In logic networks for standard-cell design flows each internal node,

excluding the primary inputs and primary outputs, represents a standard cell.

2.3 Cuts and Partitions

Due to the intractability of most logic synthesis problems, optimization is often performed

on small sub-networks, known as windows or peephole. Consequently, it is crucial to develop

efficient techniques to extract sub-networks or partition a Boolean network. In this section, we

first present cuts, which are an essential part of technology mapping and many optimization

algorithms, and a method to enumerate them. Then, we describe windowing as a method for

peephole optimization, such as Boolean resubstitution.

2.3.1 Cuts and Cut Enumeration

A cut C of a Boolean network is a pair (n, K), where n is a node called root, and K is a set

of nodes, called leaves, such that 1) every path from any PI to node n passes through at least

one leaf; and 2) for each leaf v ∈K , there is at least one path from a PI to n passing through v

and not through any other leaf. The size of a cut is defined as the number of leaves. A cut is

k-feasible if its size does not exceed k. A cut covers (i.e., includes) all the nodes encountered

on the paths between the leaves and the root, including the root and excluding the leaves. A

multiple-output cut is an extension of a cut defined over a set of roots L . A cut rooted in a

21

Chapter 2 . Background

a b c d

∧ ∧

∧

∧

∧

p q

r

s

t

Φ(a) = {{a}}
Φ(b) = {{b}}
Φ(c) = {{c}}
Φ(d) = {{d}}
Φ(p) = {{a,b}, {p}}
Φ(q) = {{a,b}, {q}}
Φ(r) = {{a,b}, {a,b, p}, {a,b, q}, {p, q}, {r }}
Φ(s) = {{a,b,c}, {p, q,c}, {r,c}, {s}}
Φ(t) = {{r,c,d}, {s,d}, {t }}

Figure 2.4: Example of a Boolean network with the corresponding 3-feasible cuts.

node n is named trivial if it consists of only node n itself

The maximum fan-out free cone (MFFC) of a node n is a subset of the transitive fan-in of n

such that every path from the nodes in the MFFC to the POs passes through n. Informally, the

MFFC of a node contains the node itself and all the logic exclusively used by the node. When a

node is removed (or substituted) the logic in the MFFC can also be removed. The MFFC can

be extended to operate on a set of roots L such that every path from the nodes in the MFFC

to the POs passes through at least one node in L .

The enumeration of cuts is an essential part of technology mappers, and optimization

algorithms, such as rewriting. Here we show the traditional method based on dynamic pro-

gramming to enumerate k-feasible cuts in a logic network [47, 155]. The computation proceeds

in topological order from the primary inputs (PIs) to the primary outputs (POs).

Let N be a logic network where V is the set of nodes, and O is the set of POs. Let I ∈V be

the set of PIs of the network, and G ∈V the set of internal nodes (V \ (I ∪ {0,1})). Let F I (n) be

the set of immediate fan-in nodes of node n ∈V andΦ(n) represent the set of k-feasible cuts

at node n ∈V . We define recursivelyΦ as:

Φ(0) =Φ(1) = {{}}

Φ(x) = {{x}} for x ∈ I

Φ(n) = {{n}}∪ (
⊗

i∈F I (n)
Φ(i)) for n ∈G

(2.5)

where F I (n) indicates the set of direct fan-in nodes of n, and the merging operation ⊗ is

defined as:

A⊗B = {u ∪ v | u ∈ A, v ∈ B , |u ∪ v | ≤ k}. (2.6)

Example 2.3.1. Figure 2.4 shows a Boolean network and the 3-feasible cuts for each node

enumerated using the method in Equations 2.5 and 2.6. For instance, cut (s, {a,b,c}), rooted at

node s, covers the nodes p, q, r , and s. ▲

22

2.4 Matching

Another approach for cut computation was proposed in [39] to overcome memory issues

when enumerating large cuts (for k > 7) because the number of cuts is simply too high. The

idea is to “factor” cuts in two sets called global and local cuts. Cut enumeration computes and

saves only local and global cuts at each node. Then, a larger set of cuts can be extracted by

expanding factor cuts with respect to local cuts on the fly, without a need of storing them. The

method allows for both complete and partial enumeration of cuts to save memory. For further

details, we refer the reader to [39].

Related to the concept of cuts, there is a notion of cover of a logic network given a set of

computed cuts, with applications in technology mapping. A cover of a logic network is a set of

cuts such that 1) each node in the network is covered by at least one cut; and 2) the root of

each cut in the cover is either a PO of the network or a leaf of one or more cuts in the cover.

A cover can be extracted in reverse topological order by selecting cuts rooted in the POs and

recurring on the leaves.

2.3.2 Windowing

In a Boolean network, a path is a finite sequence of connected nodes v0 → ··· → vl where

(vi , vi+1) are connected with an edge. Two paths are reconvergent if they start at the same

node v0 and join at the same node vl arriving from two different fan-ins of vl . Identifying

reconvergent paths is crucial in logic optimization because reconvergence enables don’t care

conditions. A reconvergence-driven cut [132] is a type of cut constructed to include recon-

vergence paths. This type of cut is used in Boolean methods such as Boolean resubstitution

to leverage don’t cares. A reconvergence-driven cut with multiple outputs is referred to as a

reconvergence-driven window. For additional details and algorithms to extract windows, we

refer the reader to [132].

2.4 Matching

Matching is the process of recognizing the equivalence of pairs of functions under certain

conditions. Typically, matching is defined over a set of equivalence classes. For example,

matching may determine whether there exists an input permutation of variables that make two

functions Boolean equivalent. Matching plays a pivotal role in many parts of logic synthesis.

In technology mapping algorithms, matching binds Boolean functions to library cells that can

implement the function under some configuration (e.g., input permutations and negations).

In rewriting algorithms, matching binds Boolean functions to pre-computed cost-optimum

graphs implementing their function. In this section, we first present useful equivalence classes

for synthesis and technology mapping. Then, we describe two main techniques for matching,

namely, pattern matching and Boolean matching. Additionally, we provide an overview of

generalized matching.

23

Chapter 2 . Background

2.4.1 Equivalence Classes

Consider two functions f (x0, . . . , xk−1) and g (x0, . . . , xk−1), defined over the same variable set

x⃗. The two functions are N P N -equivalent if there exists an inversion of the inputs NI :

(xi → x̄i), a permutation of the inputs P I : (xi x j → x j xi), or an inversion of the output NO :

(f → f̄) such that f and g can be made Boolean equivalent [23]. Similarly, N -, P -, and,

N P -equivalence classes are defined considering input negations, input permutations, and

both input negations and permutations, respectively.

Matching is commonly defined in terms of N -, P -, N P -, or N P N -equivalence classes.

For instance, over P -equivalence classes, matching of two functions f and g searches for a

permutation operator P I such that f (⃗x)⊕̄g (P I x⃗) is a tautology.

Example 2.4.1. Let us consider two functions f = ab + cd and g = āc +bd̄. The two functions

are N P N -equivalent under the input operator NI P I = {abcd → ācbd̄}. ▲

Equivalence classes are used as solutions to reduce the memory footprint of cell libraries

and databases of functions. This process avoids saving all the configurations of the cells

based on permutations and negations. For k-inputs, 22k
different Boolean functions exist.

Using N P N classes reduces the number of k-input Boolean functions to 14, 222 and 616126

classes, for k = 3,4,5, respectively.

For additional details on how to perform the enumeration of equivalence classes for small

and large functions, we refer the reader to [82, 182].

2.4.2 Pattern Matching

Structural approaches were the first adopted methods to bind Boolean functions to cells, for

instance those contained in standard cell libraries. Cells were represented using a pattern

(graph), typically in the form of a 2-input NAND decomposition of the Boolean functionality.

The matching task was then formulated as a (sub)graph isomorphism problem, particularly

efficient when the decomposition graph is a tree. A cell can be associated with a sub-graph if

one of its patterns matches the sub-graph, i.e., they are structurally equivalent. This form of

matching became known as pattern matching [90]. However, while being simple, this approach

has several limitations. The most important one is that the graph decomposition is not unique.

Consequently, the number of possible graph decompositions can grow exponentially large for

some functions, making it challenging to detect potential matches. Moreover, the matching

process is significantly more involved when the decomposition graph is not a tree, such as in

the case of XOR gates, because the decomposition has reconvergence paths.

Generally, a database contains a family of patterns for each cell. Initially, potential de-

compositions for cells into 2-input NANDs were manually created and stored in a database.

However, as more robust algebraic and Boolean methods emerged, decompositions began to

be automatically generated. Technology mapping algorithms relying on pattern matching, are

24

2.4 Matching

termed rule-based, as the pattern databases contained rules for matching [65, 84, 90].

2.4.3 Boolean Matching

Another approach to matching, called Boolean matching [123], uses a canonical Boolean

representation of functions to address the non-canonicity problem of pattern matching.

Boolean matching inherently solves a tautology problem between a target Boolean function

and a set of functions representing library cells. Additionally, Boolean matching may consider

variable permutation, phase assignment, and don’t care conditions along with the matching

problem.

Example 2.4.2. Let us consider two Boolean functions f = x0x1 + x̄0x̄1 + x̄1x2 and g = x0x1 +
x̄0x̄1 +x0x2. Although the two functions differ from the last term, they are Boolean equivalent

and Boolean matching can detect the equivalence. However, since the f and g are different and

have different decomposition trees, pattern matching might not detect the equivalence. ▲

Original approaches to solve Boolean matching were based on recursive Shannon decom-

position and on filters based on unate/binate variable matching and symmetry properties.

While these methods are still in use for large functions, when small functions up to 6 inputs

are involved, modern approaches use truth tables as a canonical data structures. Boolean

matching is used in many state-of-the-art technology mappers and supports the majority of

the cells present in standard cell libraries.

2.4.4 Generalized Matching

Generalized matching (GM) [23] is a multiple-output Boolean matching technique that sup-

ports matching multiple single-output cells or one multiple-output cell with a multiple-output

Boolean function expressed as a Boolean relation [184]. Generalized matching has two main

advantages compared to standard matching methods. First, it supports mapping to multiple-

output cells, which are commonly available in standard libraries, such as full adders. Second,

by leveraging Boolean relations, GM can achieve lower-cost mappings compared to traditional

matching algorithms, even when considering don’t care conditions. However, the significantly

higher computational complexity of GM makes it impractical for use in global technology

mappers.

Generalized matching has been used to iterative remap logic circuits by locally replacing

clusters of two or more cells with a more efficient implementation [22]. Since GM is used

during the remapping phase, accurate cost functions to minimize delay, dynamic power, or

area can be considered. For more details on GM, we refer the reader to [22, 23].

25

Chapter 2 . Background

2.5 Algorithms

In this section, we provide an overview of logic optimization algorithms for multi-level net-

works. We first present algebraic methods, which are based on polynomial algebra. Then, we

introduce Boolean methods, which are based on Boolean algebra. Finally, we describe exact

synthesis methods.

2.5.1 Algebraic Methods

Algebraic methods leverage the algebraic model to represent Boolean functions as algebraic

expressions (or polynomials) [52]. This abstraction simplifies the manipulation of large net-

works by neglecting Boolean properties, thus enabling the development of fast optimization

techniques. Traditionally, these methods were designed for multi-level networks where each

node is described in SOP form. Various optimization techniques were developed, includ-

ing factoring, substitution, extraction, decomposition, and algebraic rewriting (see, e.g., [28,

29, 52]). The effectiveness and scalability of these methods were supported by theories on

weak-division and kernel extraction.

One important algebraic method is factoring, which involves transforming a sum-of-

products (SOP) form into a compact factored form by identifying and extracting common

sub-expressions. The primary objective is to find a factorization that minimizes the number

of literals. Traditionally, the number of factored form literals in a logic network served as

a key metric for optimization, leading to the development of many algorithms to compute

minimal factored forms. While exact algorithms have been created to determine the optimal

factored form [100, 101], their high computational complexity often makes them impractical in

logic manipulation. Consequently, multiple heuristic algorithms relying on kernel extraction

and algebraic division have been proposed [28]. These algorithms have proven to be highly

effective and still remain in use in modern logic synthesis tools.

Algebraic methods for homogeneous logic networks, such as AIGs, XAGs, and MIGs,

primarily utilize algebraic transformation rules based on algebraic axioms. For example,

balancing uses the associative property to reduce circuit depth [143]. Algebraic rewriting

employs additional rules to replace small cones of logic with improved implementations,

enhancing circuit size or depth (see, e.g., [5, 194]).

Example 2.5.1. Figure 2.5 shows an algebraic rewriting transformation over an AND-OR graph

using the rule a ∧ (b ∨ (c ∧d)) → (a ∧b)∨ ((a ∧ c)∧d). This rule first applies the distributive

property to a and then balances the graph. Considering the input arrival times shown in blue,

this transformation reduces the circuit depth from 4 to 3 while increasing the node count by

one. ▲

26

2.5 Algorithms

0
a

b
1

c
0

d
1

f

4

∧

∨

∧

(a) Before algebraic rewriting

0
a

0
a

b
1

c
0

d
1

f

3

∧

∧∧

∨

(b) After algebraic rewriting

Figure 2.5: Rewriting with AND-OR distributive rule a ∧ (b ∨ (c ∧d)) → (a ∧b)∨ ((a ∧ c)∧d).

2.5.2 Boolean Methods

Contrarily to algebraic methods, Boolean methods fully leverage the power of the Boolean

model, using Boolean identities and don’t care conditions [52]. Don’t care conditions are

functional flexibilities related to the environment around a Boolean function and play a crucial

role in logic synthesis. The don’t care conditions at the primary inputs and primary outputs of

a local function are referred to as external and consist of the controllability and observability

components. Controllability don’t cares are input patterns that are never produced by the

environment at the function’s inputs. Observability don’t cares are input patterns that produce

outputs that are not observed by the environment and, thus, can be ignored. Boolean methods

leverage the additional degrees of freedom given by Boolean algebra and don’t care conditions

to achieve better solutions, in general, compared to algebraic methods. However, these

methods have also a higher computational complexity and inferior scalability. Traditional

Boolean methods include Boolean simplification and Boolean substitution (or resubstitution)

(see, e.g., [28, 52]).

Example 2.5.2. In Boolean simplification, a local Boolean function f can use the external don’t

care conditions (DCext) to minimize its implementation cost, thereby obtaining a new Boolean

function f ′ that is locally different but globally equivalent in the environment to the original, as

long as the difference is contained in its don’t care set (f ⊕ f ′ ⊆ DCext). ▲

For a local Boolean function, functional flexibilities due to don’t care conditions define a

set of permissible functions, such as f ′ in Example 2.5.2. The set of all permissible functions it

is called maximum set of permissible functions [151]. Boolean methods rely on an efficient

computation of don’t care conditions, for which many algorithms exist based on Boolean

algebra, image computation, BDDs, and satisfiability (SAT) solving (see, e.g., [52, 136, 176]).

Multiple Boolean methods have been proposed for homogeneous logic networks, includ-

ing Boolean resubstitution, Boolean rewriting, Boolean factoring. In this section, we review

27

Chapter 2 . Background

Boolean resubstitution and Boolean rewriting.

Boolean resubstitution

Resubstitution [132], often shortened to resub, (re)expresses the function of a node using other

nodes, called divisors, that are already present in the network. The transformation is accepted

if the new implementation of a node is better, according to a target metric (e.g., size), compared

to the current implementation of the node in terms of its immediate fan-ins. This approach

generalizes to k-resubstitution, which adds k new nodes and removes at least k +1 nodes.

The removed nodes are the ones present in the maximum fan-out free cone (MFFC) [132] of

the node. The functionality of the new nodes is derived from a library of primitives used for

resubstitution or a composition of primitives. For instance, in an AIG, added gates are 2-input

ANDs with optional inverters at the inputs/outputs. More complex primitives, such as XORs

and MUXes, have also been used for resubstitution [9]. Boolean resubstitution leverages don’t

care conditions to find additional opportunities beyond those available through algebraic

substitution. The quality of resubstitution largely depends on the collection of divisors and

the adopted resynthesis heuristics.

Modern scalable resubstitution is achieved using windows or simulation signatures, to

overcome the limitations in the number input variables and divisors. In window-based resub-

stitution [132], a window (or logic region), typically up to 12 or 16 inputs, is structurally built

around the target node. Resubstitution is then performed by treating the inputs (outputs)

of the window as primary inputs (outputs) of the circuit. This methods allows for a feasible

computation of don’t cares and a manageable number of collected divisors. In simulation-

guided resubstitution [108], the entire circuit is considered, but the nodes’ functionality is

extracted from simulation using a limited number of patterns, typically up to 1024. This has

the advantage of considering global controllability don’t cares. Divisors are extracted using

large windows that are not limited by the number of inputs. Then, resubstitution is performed

approximately on the simulation patterns and subsequently verified for functional correctness

using SAT-based equivalence checking.

Boolean rewriting

Rewriting [137] is a fast greedy algorithm that aims at minimizing the size of a logic network. It

does so by iteratively replacing sub-graphs identified by structural cuts rooted in a node with

smaller pre-computed structures while preserving the functionality at the root node. Typically,

pre-computed structures cover all the 4-variable functions, which are classified into the NPN

equivalence classes for compactness and extracted using exact synthesis. Rewriting has been

implemented for many homogeneous logic networks representations, including AIGs, XAGs,

MIGs, k-LUTs, and XMGs (see, e.g., [68, 137, 167, 169, 196, 202]).

28

2.6 Benchmark suites

2.5.3 Exact Synthesis Methods

Most of the methods reviewed in this section are heuristic, reflecting the inherent intractability

of many synthesis problems. Here, we provide an overview of exact synthesis methods, which

aim to find the minimum-cost logic representation for a given Boolean function. Typically,

the cost criterion is the number of gates (correlated with the area) or the logic network depth

(correlated with the delay). Examples of exact methods in the literature include finding

the minimum SOP with respect to the number of implicants (Quine-McCluskey, Espresso

exact [171]), the minimum factored form with respect to the number of literals [101], and the

minimum-size logic network consisting using 2-input gates or other primitives [69]. Exact

methods for multi-level networks generally involve techniques such as enumeration or SAT

solving.

The Boolean satisfiability (SAT) problem asks if there exists a value assignment to the input

variables of a formula that makes it satifiable (SAT, i.e., evaluates to true). This assignment

is called a satisfying assignment. SAT solvers are programs that receive a Boolean formula,

typically represented in CNF, and return a satisfying assignment, if one exists. SAT-based

exact synthesis for minimum size encodes the problem as a CNF formula and asks whether

there exists a multi-level logic network involving r gates. Initially, r is set to 0, and the value is

incremented in a loop until the problem becomes satisfiable, indicating that an optimum-size

implementation has been found. SAT-based exact synthesis has been shown to be practical for

computing minimum-size implementations up to 5-input functions using 2-input gates. In

this context, NPN classification significantly reduces the number of functions that need to be

synthesized and stored, enabling the creation of a database of optimum implementations for

Boolean rewriting. For more details on SAT-based exact synthesis and its encoding, we refer

the reader to [69, 180, 181].

2.6 Benchmark suites

In this section, we present the benchmark sets used throughout the experiments in this thesis.

For each circuit, we provide its name, the number of inputs and outputs, as well as its size and

depth in an unoptimized AIG representation.

EPFL combinational benchmark suite

The EPFL combinational benchmark suite [3]1, introduced in 2015, was designed to establish

a new comparative standard for the logic optimization and synthesis community. It originally

comprised twenty combinational circuits intended to challenge modern logic optimization

tools. The suite is categorized into arithmetic and random or control circuits. Additionally, it

includes three more than a million (MtM) circuits, which are not utilized in the experiments

of this thesis. Table 2.1 shows the characteristics of the EPFL circuits.

1The EPFL circuits are available at the following link: https://github.com/lsils/benchmarks.

29

https://github.com/lsils/benchmarks

Chapter 2 . Background

Table 2.1: The EPFL combinational benchmark suite.

Type Benchmark Inputs Outputs AND nodes Levels

Arithmetic

adder 256 129 1020 255
bar 135 128 3336 12
div 128 128 57247 4372
hyp 256 128 214335 24801
log2 32 32 32060 444
max 512 130 2865 287
multiplier 128 128 27062 274
sin 24 25 5416 225
sqrt 128 64 24618 5058
square 64 128 18484 250

Random/control

arbiter 256 129 11839 87
cavlc 10 11 693 16
ctrl 7 26 174 10
dec 8 256 304 3
i2c 147 142 1342 20
int2float 11 7 260 16
mem_ctrl 1204 1231 46836 114
priority 128 8 978 250
router 60 30 257 54
voter 1001 1 13758 70

IWLS 2005 benchmark suite

The IWLS 2005 benchmark suite [85] includes 84 open-source circuits, featuring up to 185,000

registers and 900,000 cells. This suite comprises circuits from OpenCores, Gaisler Research,

Faraday Technology Corporation, ITC 99, and ISCAS 85 and 89. In this thesis, we utilize a

subset of 27 of these circuits, specifically from the first three collections, represented as AIGs2.

The circuits were originally provided mapped to a 180nm technology. The characteristics of

the circuits are shown in Table 2.2.

Superconducting benchmark suite

The superconducting benchmark suite includes circuits from ISCAS 85, represented as MIGs

instead of AIGs, provided by the authors of [35]3. The characteristics of these circuits are

detailed in Table 2.3. Additionally, we present the maximum fan-out of nodes, including

primary inputs, as this parameter has important implications in superconducting electronics.

2The IWLS 2005 circuits are available in the logic synthesis tool Mockturtle at the following link: https://github.
com/lsils/mockturtle/tree/master/experiments/benchmarks.

3The superconducting circuits are available at the following link: https://github.com/lsils/SCE-benchmarks/
tree/main/ISCAS.

30

https://github.com/lsils/mockturtle/tree/master/experiments/benchmarks
https://github.com/lsils/mockturtle/tree/master/experiments/benchmarks
https://github.com/lsils/SCE-benchmarks/tree/main/ISCAS
https://github.com/lsils/SCE-benchmarks/tree/main/ISCAS

2.7 Summary

Table 2.2: The IWLS 2005 benchmark suite.

Benchmark Inputs Outputs AND nodes Levels

ac97_ctrl 4482 2251 14268 12
aes_core 1319 668 21522 26
des_area 496 72 4857 33
des_perf 17850 9038 82650 20
DMA 5070 2559 24393 27
DSP 7835 3954 45420 63
ethernet 21216 10698 86726 32
iwls05_i2c 275 144 1166 14
leon2 298888 291880 789647 58
leon3_opt 370159 252691 974977 54
leon3 370159 252691 1088122 59
leon3mp 217858 142925 652353 55
iwls05_mem_ctrl 2281 1226 15337 36
netcard 195730 97805 803848 40
pci_bridge32 6880 3533 22806 30
RISC 15678 8111 75613 40
sasc 250 132 773 9
simple_spi 280 147 1053 12
spi 505 277 3808 32
ss_pcm 193 98 405 7
systemcaes 1600 819 12384 46
systemcdes 512 258 2999 27
tv80 732 404 9647 52
usb_funct 3620 1858 15894 27
usb_phy 211 111 460 10
vga_lcd 34247 21412 126708 24
wb_conmax 2670 2189 47853 27

2.7 Summary

In this chapter, we introduced state-of-the-art data structure and algorithms used in logic

synthesis. We also explored various optimization methods, including algebraic, Boolean, and

exact approaches. These methods form the foundation of modern logic synthesis, enabling

efficient manipulation and optimization of logic circuits. In the remainder of the thesis,

we will use truth tables, BDDs, and logic networks to represent Boolean functions and to

perform circuit transformations. Additionally, we will extensively refer to partitioning and

matching algorithms, which are essential in technology mapping. This chapter provides the

fundamental background needed to understand the algorithms and methodologies proposed

in the rest of the thesis.

31

Chapter 2 . Background

Table 2.3: The superconducting benchmark suite.

Benchmark Inputs Outputs 3-MAJ nodes Levels Max fan-out

adder1 3 2 7 4 2
adder8 17 9 77 17 3
mult8 16 16 439 35 9
counter16 16 5 29 9 4
counter32 32 6 82 13 4
counter64 64 7 195 17 4
counter128 128 8 428 22 4
c17 5 2 6 3 2
c432 36 7 121 26 10
c499 41 32 387 18 8
c880 60 26 306 27 9
c1355 41 32 389 18 9
c1908 33 25 289 21 14
c2670 157 64 368 21 32
c3540 50 22 794 32 38
c5315 178 123 1302 26 41
c6288 32 32 1870 89 17
c7552 207 108 1394 33 170
sorter32 32 32 480 15 2
sorter48 48 48 880 20 3
alu32 68 65 1513 100 128

32

3 Technology Mapping for FPGAs

The goal of this thesis is to develop and enhance technology mapping algorithms for mul-

tiple technologies and, more broadly, for logic synthesis. Each technology presents unique

constraints and requires specialized techniques, which are addressed in different chapters of

this thesis. Following a brief introduction on state-of-the-art synthesis methods and relevant

background in Chapter 2, we transition into the first technical section of this research work.

This chapter focuses on novel technology mapping algorithms for field-programmable gate

arrays (FPGAs), where a synthesized logic network is transformed into an interconnection

of lookup tables (LUTs). Specifically, this chapter analyzes: (i) practical algorithms for the

Boolean decomposition of large functions into LUTs; (ii) an advanced delay-driven technol-

ogy mapping algorithm that integrates Boolean decomposition to reduce the structural bias;

(iii) a technology mapper that leverages non-routable connections in FPGAs to reduce the

worst-case delay. The content of this chapter is largely based on the publications in [144, 198,

199].

The remainder of this chapter is organized as follows. First, we present the motivations of

this chapter in Section 3.1 and the relevant background on technology mapping for FPGAs

and Boolean decomposition in Section 3.2. Next, Section 3.3 proposes an efficient algorithm

to compute the Ashenhurst-Curtis decomposition (ACD) of functions into LUTs. We propose

several improvements that make ACD applicable to LUT mappers and resynthesis engines.

We provide algorithms to minimize the decomposition cost in terms of the number of LUTs,

edges, and delay, considering input arrival times. The experimental results show that our

approach runs up to 80 times faster compared to state-of-the-art Boolean decomposition

methods while achieving the decomposition success of an optimum SAT-based implemen-

tation. Then, Section 3.4 presents a technology mapping algorithm that integrates the ACD

decomposition of Section 3.3 in a delay-driven LUT mapper to achieve better delay results.

The experimental results show that LUT mapping with ACD improves the delay of circuits in

the EPFL benchmark suite by 12.39%, on average, compared to the state-of-the-art mapper

with choices. Additionally, it discovers new best implementations in the EPFL competition.

Next, Section 3.5 describes methods to leverage fast (non-routable) connections between

33

Chapter 3 . Technology Mapping for FPGAs

adjacent LUTs in FPGAs [10] to minimize the delay. The proposed approach is based on

Boolean decomposition into structures of 2 LUTs arranged in cascade. We show that our

implementation outperforms the state-of-the-art methods in delay, area, edge count, and

run time by 6.22%, 3.82%, 3.09%, and 20%, respectively. Finally, Section 3.6 concludes and

summarizes this chapter, highlighting the key findings and contributions.

3.1 Motivation

Field-Programmable Gate Arrays (FPGAs) are integrated circuits with configurable logic blocks

and programmable interconnects. Unlike standard-cell-based designs, which follow a semi-

custom design methodology and have a fixed configuration, FPGAs can be programmed many

times, which comes at the cost of lower power-performance-area (PPA) metric. FPGAs are

widely used for rapid prototyping, in low-volume applications, and for hardware acceleration

of specific tasks.

Logic synthesis for hardware designs intended to run on FPGAs shares similarities with

those for standard-cell-based design, but the target primitive is a k-input lookup table (LUT),

capable of implementing any Boolean function up to k inputs. Specifically, this chapter

focuses on mapping technology-independent combinational logic into networks composed

of k-LUTs.

State-of-the-art technology mapping into LUTs is performed through local substitutions

applied to an initial graph representation, called the subject graph. The drawback of this

approach is that the technology-independent optimization step and the technology mapping

step are separated. Consequently, the impact of optimization on the quality of the final

LUT network is hard to predict before mapping. Delay-optimal mapping for a fixed subject

graph is feasible in polynomial time [45]. Area-optimal mapping is NP-hard [59]. Specifically,

the structure of the subject graph highly influences the mapping quality. This is known as

structural bias. To mitigate structural bias, the known methods compute structural choices

for the subject graph and use them during mapping [37, 114], or collapse and decompose

parts of the graph during mapping [41, 60, 112]. However, exact area and delay optimization

during LUT mapping remain NP-hard [46, 124]. This chapter explores the use of Boolean

decomposition to enhance delay-driven LUT mapping.

On another note, the performance of modern FPGAs is limited by programmable intercon-

nect. Specifically, the interconnect delay can be five times or more higher than the intrinsic

delay of a LUT because wires are routed through multiple switch boxes and routing channels.

One solution adopted by FPGA vendors is to supplement programmable interconnect with

non-routable (fixed) connections between adjacent LUTs within a slice, creating LUT struc-

tures such as LUT cascades [10]. However, existing placement algorithms struggle to effectively

utilize these connections because this requires introducing LUT structures after LUT mapping.

Alternatively, Boolean decomposition has emerged as an efficient way of generating LUT

structures during mapping [165].

34

3.1 Motivation

Bound set
(BS)

Shared set
(SS)

Free set
(FS)

L1

L2 L3

x0x1x2x3x4 x0x1x2x3 x5 x6x7

Figure 3.1: ACD of an 8-input Boolean function into three 5-input LUTs with a 5-variable
bound set (BS), a 1-variable shared set (SS), and a 2-variable free set (FS).

The Ashenhurst-Curtis decomposition (ACD) [12, 49], also known as Roth-Karp decomposi-

tion [170], is a powerful technique to decompose a Boolean function into a set of sub-functions

and a composition function with reduced support. ACD finds applications in logic optimiza-

tion and technology mapping. The traditional formulation of ACD breaks the input variables

into two groups: the bound set (BS) and the free set (FS). Other approaches to ACD [113] allow

for a shared set (SS) when some functions in terms of the BS variables are buffers. The larger

the SS size, the fewer sub-functions are required. For instance, Figure 3.1 shows an ACD of a

function with BS, FS, and SS, resulting in three 5-input LUTs. Conventional methods leverage

binary decision diagrams (BDDs) [32] to perform ACD [113, 161, 208]. More recent approaches

use truth tables for functions up to 11 or 16 inputs [133, 165].

This chapter has three main contributions. First, we revisit the formulation of ACD with

shared set to enhance its computationally efficiency in LUT mappers and post-mapping resyn-

thesis engines performing delay optimization. Our algorithm is truth-table-based and flexible

in the number of FS, BS, and SS variables, and in the number of BS functions. Our ACD runs

up to 2x faster, compared to [165], and up to 80x faster, compared to [133], when performing

decompositions into the LUT structure "66" composed of two 6-LUTs. Furthermore, the

proposed method finds considerably more solutions, which translates into better quality of

results.

Second, we use ACD for the delay optimization of LUT networks. The idea is to compute

functional decompositions using timing-critical variables in the FS and the rest of the variables

in the BS and SS. This method is more general than cofactoring w.r.t. late arriving variables

using Shannon expansion [134] and leads to improved quality of results. We integrate our ACD

into the state-of-the-art LUT mapper for delay optimization. To our knowledge, this is the first

practical and scalable work that uses ACD for delay-driven LUT mapping.

Third, we propose a technology mapper that uses ACD to leverage the non-routable

cascade connections between LUTs for delay optimization.

35

Chapter 3 . Technology Mapping for FPGAs

We experimentally evaluate the use of ACD for LUT mapping by comparing the results

with state-of-the-art methods:

1. We show that the proposed ACD method has a higher decomposition success ratio, up

to 32.58% more than state-of-the-art, and a better or competitive run time.

2. We demonstrate that mapping with ACD can efficiently mitigate the structural bias and

considerably reduce the delay. We compare the traditional LUT mapper in ABC, the

LUT-structure mapper in ABC, and the proposed mapper with integrated ACD. We show

that mapping with ACD notably outperforms the other mappers in delay by 7.52% on

average, also when using structural choices [37]. Moreover, we show that an additional

mapping round using the network obtained by ACD as a structural choice can further

improve the delay, compared to the baseline, by 12.39%, with a surprising area reduction

of 2.20%.

3. We present four new best results in the EPFL competition. These results have been

obtained using delay-oriented mapping with ACD and without employing design-space

exploration (DSE) methods. Hence, we expect even better results by using LUT mapping

with ACD in a DSE tool.

4. We use this new ACD formulation to compute mappings into LUT structures composed

of 2 LUTs with a non-routable connection between them. Compared to the state-of-

the-art approach [165], our method reduces the average delay, area, and edge count

by 6.22%, 3.82%, and 3.09%, respectively, with better run time. In particular, this new

formulation is exact, i.e., it always guarantees a solution for functions decomposable

into 2 LUTs.

3.2 Preliminaries

In this chapter, we research algorithms to solve the technology mapping problem for combina-

tional networks targeting FPGAs. Our focus is on Boolean decomposition methods to improve

mapping. In the following sub-sections, we introduce the basic notations, background, and

related work on Boolean decomposition and LUT mapping.

3.2.1 Boolean Decomposition

Boolean decomposition refers to the process of breaking down a Boolean function into simpler

components. Boolean decomposition produces a Boolean network with POs functionally

equivalent to the original function. The most generic decomposition is the Ashenhurst-Curtis

decomposition (ACD) [12, 49, 170]. The ACD of a single-output Boolean function f can be

expressed as follows:

f (⃗xbs , x⃗ss , x⃗ f s) = g (⃗h (⃗xbs , x⃗ss), x⃗ss , x⃗ f s), (3.1)

36

3.2 Preliminaries

where x⃗bs is the bound set (BS), x⃗ss is shared set (SS), and x⃗ f s is the free set (FS). These sets

are disjoint variable subsets, which together form the support of f . The function h⃗ may be

multiple output with the number of outputs less than the BS size. The single-output functions

in h⃗ are referred to as BS functions. The function g is referred to as the composition function.

When decomposing into k-LUTs, the composition function is typically chosen to fit into one

k-input LUT.

Example 3.2.1. Figure 3.1 shows an ACD of an 8-input function into three 5-input LUTs with

a 5-variable BS, a 1-variable SS, and a 2-variable FS. The decomposition generates two BS

functions (L2, L3) and a composition function (L1). ▲

The disjoint-support decomposition (DSD) [25] is a decomposition where the set of nodes

have disjoint support. Hence, the Boolean network generated from DSD is always a tree. ACD

generates a DSD decomposition when x⃗ss =; and BS functions have disjoint support.

The Shannon decomposition is a Boolean decomposition based on the Shannon expansion:

f = x fx + x̄ f x̄ . (3.2)

The result of applying the Shannon decomposition to all variables and merging identical

cofactors, is a BDD.

Related works

Traditionally, Boolean decomposition is implemented using BDDs [95, 113, 161, 208], derived

by applying the Shannon decomposition to all variables in a given order and using reduction

rules. Typically, multiple variable orderings are explored to find a partition of variables into

bound set (BS) and free set (FS) and perform a support-reducing ACD [208]. However, algo-

rithms that perform ACD suffer from slow run time and poor performance on large functions.

To enhance efficiency, conventional methods often restrict decomposition to a limited set of

primitives, such as 2-input operators and multiplexers [185, 214], and compute only disjoint

support decompositions [24, 25, 36]. For instance, the logic optimization system BDS [214]

can perform decomposition and optimization using AND, OR, XOR, and MUX operators over

BDDs. Additionally, the tool BDS-pga [208] extended BDS to map circuits to LUTs.

Recent advancements have leveraged truth tables for ACD up to 16 variables, either by

replicating variable re-ordering and size minimization of BDDs without explicitly constructing

one or by computing a DSD that minimizes the required number of LUTs. Specifically, in [165],

the authors use DSD and a heuristic variable re-ordering to find an ACD into a structure of

2 or 3 LUTs with non-routable connections. This method limits the shared set to at most

one variable. In [133], the authors use ACD in post-mapping resynthesis when logic cones

composed of several LUTs are collapsed into single-output Boolean functions and re-expressed

using fewer LUTs by DSD and the Shannon expansion.

37

Chapter 3 . Technology Mapping for FPGAs

In Section 3.3, we address the limitations of the previous ACD methods. Our method is

based on truth tables and does not have limitations on the number of LUTs and the size of

SS. It produces better quality of results and runs up to 80x faster than other more constrained

implementations in ABC [133]. Moreover, our ACD does not rely on BDD-related heuristics

and is not limited to primitive gates used in DSD, but performs a more complete search.

3.2.2 FPGA Technology Mapping

LUT mapping is the process of expressing a Boolean network in terms of k-input lookup tables

(k-LUTs). Before mapping, the network is represented as a k-bounded Boolean network called

the subject graph, which contains nodes with a maximum fan-in size of k. The AIG is the

most common subject graph representation. The subject graph is transformed into a mapped

network by applying local substitutions to sections of the circuit defined by cuts computed

using cut enumeration [47]. A LUT mapper computes a mapping solution, called cover, by

selecting a subset of the cuts that cover the subject graph while minimizing a cost function.

State-of-the-art LUT mappers compute cuts and refine the cover in several mapping passes

using heuristics based on delay, area, and edge count. For further details on LUT mapping, we

refer the reader to [141].

Related works

State-of-the-art LUT mapping for FPGAs relies on cut enumeration [47] followed by graph

covering [45, 141]. Depth-optimal mapping for a k-bounded network is solvable in polynomial

time [45], while area-optimal mapping is proven to be NP-hard [59, 117]. However, the

structure of the subject graph influences the structure of the mapped network to a large extent.

This is known as structural bias. Mitigating structural bias is essential to improve the mapping

quality.

Several methods derive an LUT network by applying flavors of Boolean decomposition to

the BDD of the original function [99, 112, 208]. Despite having a lower structural bias, these

approaches are run-time intensive and limited to small functions, for which BDDs can be

constructed. In practice, they rarely work well for functions with more than 16 inputs.

To scalably reduce structural bias, previous work adopted different techniques. In [37,

114], structural bias is reduced by accumulating structural choices for the subject graph and

using them during mapping. In [41, 60, 165], decomposition into k-LUTs is performed during

technology mapping. In particular, the Chortle mapper [60] uses a structural decomposition

based on bin-packing techniques to map logic into LUTs wherever the associative property

holds. The method in [165] integrates Boolean decomposition, based on an heuristic ACD

algorithm, into k-LUT mapping to map logic into non-routable LUT structures composed of

2 or 3 LUTs. The approach extracts combinational logic cones with more than k inputs and

decomposes them on the fly.

38

3.3 Boolean Decomposition into LUTs

Often, reducing structural bias during technology mapping is not enough to achieve good

quality of results. For instance, in [121], the authors perform a flow consisting of several

iterations of remapping and support-reducing decomposition to reduce structural bias.

In Sections 3.4 and 3.5, we perform on-the-fly decomposition similar to [165] but with two

main differences. First, we utilize a more flexible and expressive ACD formulation. Second,

our method can be customized for delay minimization.

3.3 Boolean Decomposition into LUTs

This section discusses a fast and versatile truth-table-based implementation of ACD with

shared set for single-output functions. We propose several enhancements that make ACD

readily applicable in LUT mappers and resynthesis methods. Figure 3.2 illustrates the ACD

computation. The BS, SS, FS, and the number of BS functions used are flexible and determined

during the decomposition. The composition function (L1) is implemented as a multiplexer

controlled by the outputs of the BS functions and the shared set. The FS functions, FS (gi),

drive the data inputs of the multiplexer. These functions become part of the composition

function.

In this section, we first review the properties of the proposed ACD, showing that it is as

generic as the original definition in [12, 49, 170] (Section 3.3.1). Second, we show how to

efficiently check the existence of a feasible ACD and divide variables into three sets: FS, BS,

and SS (Section 3.3.2). Third, we show how to compute the decomposition while minimizing

the number of BS functions and their support (Section 3.3.3). Fourth, we discuss an alternative

method to maximize the number of variables in the shared set (Section 3.3.4). Fifth, we present

an efficient algorithm for decomposing functions into two LUTs (Section 3.3.5) and a cascade

of LUTs (Section 3.3.6). Finally, we present the experimental results of our ACD formulation

and algorithms. We show that the proposed ACD method has a higher decomposition success

ratio, up to 32.58% more than state-of-the-art, and a better or competitive run time while

being more generic.

3.3.1 Theory

First, we formalize the definition of ACD and discuss its properties. Given the ACD shown in

Figure 3.2 and the disjoint sets of variables x⃗bs , x⃗ss , x⃗ f s , we name

h⃗ (⃗xbs , x⃗ss) = (h0(⃗xbs , x⃗ss), . . . ,hv−1(⃗xbs , x⃗ss)) (3.3)

the set of bound set functions of size |⃗h| = v . In Figure 3.2, h⃗ has size v = 1 and is represented

by L2. In Figure 3.1, h⃗ has size v = 2 and is represented by L2 and L3. An ACD can be expressed

by Equation 3.1. In Figure 3.2, L1 implements function g as a multiplexer with M select lines

connected to functions in h⃗ and variables in x⃗ss , such that M = v + |⃗xss |. An input assignment

39

Chapter 3 . Technology Mapping for FPGAs

00 01 10 11

f

L1

Bound set
(BS)

Shared set
(SS)

Free set
(FS)

L2

g0 g1 g2 g3

Figure 3.2: Illustrating the AC decomposition of a Boolean function

to the select lines of g selects a function gi (⃗x f s) where 0 ≤ i < 2M .

We demonstrate that our ACD decomposition is generic and includes other formulations,

such as the Shannon decomposition. Let us represent the function g as a ROBDD ordered

with variables h⃗ and x⃗ss located close to the root, while variables x⃗ f s are found close to the

leaves. Let us draw a cut line in the ROBDD, such that nodes are partitioned into two disjoint

sections: one dependent on h⃗ ∪ x⃗ss variables (denoted by α), and one dependent on x⃗ f s

variables (denoted by β). In our decomposition, α is implemented by the multiplexer of g ,

and β is implemented by the FS functions gi . In particular, the number of nodes in β at the

interface of the cut is equivalent to the number of unique gi functions. Notably, we can extract

β by drawing a cut in the ROBDD of f , with x⃗ f s variables close to the leaves, separating x⃗ f s

from x⃗bs ∪ x⃗ss [99, 142].

Example 3.3.1. Figure 3.3 shows the BDD of a decomposable 6-input function f and a partition

into bound set and free set variables when targeting 4-input LUTs. The bound set contains

variables x0, x1, x2, and x3, while the free set contains variables x4 and x5. The partition draws

a cut, in blue, that divides the BDD into the β and γ sections. The unique cofactors that are

reachable from the cut in β are g0 = 0 and g1 = x4 ⊕ x5. Hence, the multiplexer needs M = 1

select line. The bound set function and the multiplexer are extracted from γ using the methods

in Section 3.3.3. ▲

It follows that g implements a partitioned BDD. Hence, our ACD formulation can imple-

ment any decomposable function. Moreover, the Shannon expansion (Equation 3.2) where x

is a control input of the multiplexer, can be represented by ACD as follows:

f = fx f x̄ 1+ fx f̄ x̄ x + f̄x f x̄ x̄ + f̄x f̄ x̄ 0,

where x is a FS variable, fx and f x̄ are BS functions, and FS functions gi are 1, x, x̄, and 0.

40

3.3 Boolean Decomposition into LUTs

f

x0

x1 x1

x2 x2 x2

x3

x4

x5 x5

1 0

γ

β

g0

g1

Bound set

Free set

Figure 3.3: ACD decomposition over a BDD with a partition of the variables into free set and
bound set.

Definition 1: Variables in the SS that are not used by BS functions are called independent

shared set variables (ISS variables). Conversely, those that are used by BS functions are defined

as dependent shared set variables (DSS variables).

According to the ACD definition in Equation 3.1, ISS variables would belong to the FS rather

than the SS, since they are not in the support of functions in h⃗. However, in our decomposition,

ISS variables serve as controls for a multiplexer, while the FS variables provide support for the

FS functions, which feed into the data inputs for the multiplexer. We demonstrate that our

definition is equivalent to the original one, i.e., if a decomposition with ISS variables in the SS

exists, it also exists with ISS variables in the FS.

Theorem 3.3.2. Let x⃗ss = x⃗i ss ∪ x⃗d ss be an SS defined as the union of two disjoint sets: one

of independent (⃗xi ss) and one not independent (⃗xd ss) SS variables. Then, f (⃗xbs , x⃗ss , x⃗ f s) =
g (⃗h (⃗xbs , x⃗d ss), x⃗i ss ∪ x⃗d ss , x⃗ f s) can be written as g ′(⃗h (⃗xbs , x⃗d ss), x⃗d ss , x⃗ f s ∪ x⃗i ss).

Proof. Let us suppose that x⃗i ss contains a single variable a. Function g is implemented as

a multiplexer of M select lines connected to h⃗, x⃗d ss , and a, and 2M data inputs functions

{g0, · · · , g2M−1}. Then, each cofactor of g with respect to h⃗ ∪ x⃗d ss variables is a function in the

form ġ (a, x⃗ f s) = a ·gi (⃗x f s)+ ā ·g j (⃗x f s) with 0 ≤ i < j ≤ 2M −1. Since the number of ġ cofactors

41

Chapter 3 . Technology Mapping for FPGAs

cannot be larger than 2M−1, f can be decomposed into the form f = g ′(⃗h (⃗xbs , x⃗d ss), x⃗d ss , x⃗ f s ∪
{a}) with variable a in the free set. The generic case is proved by induction. ■

Finally, we state a theorem used in Section 3.4 to conduct the search for a feasible decom-

position.

Theorem 3.3.3. If a decomposition of function f into two levels of k-LUTs with P variables in

the free set does not exist, f cannot be decomposed with P ′ > P variables in the free set.

Proof. Let us suppose that a decomposition exists for P ′ > P and does not exist for P . The

decomposition with P ′ involves at most k −P ′+1 < k −P +1 LUTs. This is a contradiction

of the principles of information theory since a decomposition using P ′ has less information

encoding than the one using P . ■

3.3.2 Finding a Feasible Variable Partition

After defining the properties of ACD, in this section we present an efficient method to check

the existence of a Boolean decomposition and find an assignment of support variables to the

FS and the BS (and SS). In particular, we focus on decomposition into a two-level k-input LUT

structure. For simplicity, in this section, we include the SS variables in the BS.

The first step to derive a decomposition is to partition variables into FS and BS. Given a

truth table, our approach enumerates different free sets. Let N be the number of variables in

the support of the function to decompose. Let P be the number of variables to consider in the

FS. The remaining N −P variables are considered in the BS. The number of different free sets

is
(N

P

)
. Regarding the choice of value P when searching for a feasible two-level decomposition,

for an N -input function and k-input LUTs, it is convenient to consider (N −k) variables in the

FS, so that at most k variables are considered in the BS.

Example 3.3.4. When N = 8 and k = 6, we can choose P = 2 to make N −P fit in a k-LUT and

evaluate 8 ·7/2 = 28 different 2-variable free sets. ▲

For each FS, the truth table is transformed to have the FS variables as the least significant

ones. The variable reordering is performed using a dedicated procedure, which swaps two

variables at a time. Note that when enumerating all the free sets, the first FS composed of the

P least significant variables in the support of the function does not need variable swapping,

since the original truth table already reflects this order. Then, every consecutive FS can be

derived from a previous FS by swapping one variable in x⃗ f s with one in x⃗bs . The complexity to

explore all the FS is of
(N

P

)
swap operations. Figure 3.4 shows how a variable swap affects the

truth table.

Each input assignment to the BS variables selects one P-input function in terms of the

FS variables. Specifically, each P-input function is a cofactor with respect to variables in x⃗bs .

42

3.3 Boolean Decomposition into LUTs

x2 x1 x0 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

f = 10110101

f x̄1 x̄2

fx1 x̄2

f x̄1x2

fx1x2

x0 ↔ x2 x0 x1 x2 f
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

f = 0xA7

f x̄0 x̄1

f x̄0x1

fx0 x̄1

fx0x1

Figure 3.4: Truth table representation in the classical tabular form and as bit string (binary
and hexadecimal), cofactor extraction w.r.t. the two most significant variables, and variable
swapping of x0 with x2.

Given a truth table with this variable ordering, FS functions are easily computed by extracting

groups of 2P bits at i ·2P offsets with i ∈ [0,2(N−P)). Informally, FS functions are bit-strings

positioned next to each other in the bit-string of the truth tables. Figure 3.4 graphically depicts

the extraction of cofactors with respect to the two most significant variables.

Example 3.3.5. Consider a 6-variable function represented in hexadecimal as the truth table

f = 0x8804800184148111. Assume that the FS variables are the two least significant variables

and the BS variables are the four most significant ones. The functions in terms of FS variables

have truth tables with 2P = 4 bits. There are 2(N−P) = 16 of these functions, corresponding to

hexadecimal digits in the truth table (0x8, 0x8, 0x0, 0x4, etc). ▲

The target function can be realized using M bound set functions if the number of unique

FS functions, known as column multiplicity µ, does not exceed 2M , hence M ≥ ⌈log2(µ)⌉. If

P +M ≤ k, the composition function fits into one k-LUT.

Example 3.3.6. Continuing Example 3.3.5, there are 16 FS functions, of which only 4 are

unique. The FS functions are 0x8, 0x0, 0x4, and 0x1. Hence, the column multiplicity µ = 4,

which requires M = ⌈log2(4)⌉ = 2 or more BS functions. Hence, this partition of variables into FS

and BS produces a feasible support-reducing decomposition into 4-input LUTs. Using Figure 3.2,

ACD assigns FS functions to gi . Then, two BS functions of at most 4 inputs are necessary to select

the correct FS function. ▲

Example 3.3.7. To illustrate how partitioning variables into FS and BS affects the truth table,

consider f ′ = 0xA010800190148105. This function is derived by swapping one FS variable with

one BS variable from function f in Example 3.3.5. In this case, for P = 2, µ = 7, requiring

M = ⌈log2(7)⌉ = 3 or more BS functions. Therefore, this partition of variables into FS and BS

does not produce a feasible support-reducing decomposition into 4-input LUTs. ▲

We employ the enumeration of free sets while counting the number of unique cofactors to

check if a support-reducing decomposition exists. In practice, a sufficient condition for a 2-

level decomposition to exist, is to have M +P ≤ k and N −P ≤ k, i.e., the composition function

43

Chapter 3 . Technology Mapping for FPGAs

is k-feasible, and the number of remaining variables in the BS does not exceed k. However,

a decomposition could have N −P > k and k-feasible BS functions, as shown in Figure 3.1.

In this case, it is not sufficient to partition variables into FS and BS to guarantee a 2-level

decomposition (unless there are ISS variables that can be moved to the FS, by Theorem 3.3.2,

to make N −P ≤ k true). Consequently, each potential decomposition with N −P > k and

P +M ≤ k, similar to the one in Figure 3.1, must be checked to be 2-level decomposable by

computing minimal-support BS functions as shown in Section 3.3.3. Due to this additional

computation, the latter ACD is often too slow to be used in mainstream LUT mappers or

resynthesis engines.

After partitioning variables into FS and BS and computing the corresponding unique FS

functions, our method uses the techniques in Section 3.3.3 to produce a decomposition while

minimizing the number of BS functions and their support.

3.3.3 Functional Encoding and Support Minimization

Once a partition of variables into FS and BS with a feasible decomposition is found, the

BS functions are extracted by assigning each FS function a code. Informally, an encoding

represents the assignment of FS functions to the data inputs of the MUX of Figure 3.2 (e.g., the

encoding of g1 is 01). While any encoding that distinguishes FS functions is a valid solution,

a good encoding also minimizes the number of BS functions and their support. It is crucial

to find an encoding that minimizes the support for three reasons. First, if N −P > k, by

minimizing the support, each BS function may ideally fit into a k-LUT, allowing for a two-level

decomposition. Second, minimizing the support maximizes the shared set (an SS variable

is a BS function represented by a buffer), reducing the number of required LUTs. Third, the

number of edges is reduced, helping routability. Finding a feasible encoding is similar to

solving constrained encoding problems [51, 209, 215].

An encoding assigns a code T = tM−1 . . . t0 of length M to each of the FS function. A variable

ti takes value 1, 0, or −, indicating the ON-set, OFF-set, and DC-set, respectively. A minimum-

length encoding is an encoding of length M = ⌈log2(µ)⌉. An encoding is strict if a unique term

T is assigned to each FS function, resulting in a Boolean function. An encoding is non-strict if

multiple pair-wise disjoint terms T can be assigned to each FS function, resulting in a Boolean

relation. For instance, given M = 2 and µ= 3, an assignment “1−” to a FS function is strict,

while “01∨10” is non-strict. In this work, we only utilize strict encodings since non-strict

encodings are too many to be efficiently enumerated in a fast ACD implementation. Moreover,

experimental evaluations on practical functions suggest that non-strict encodings do not

improve the quality of the decomposition. For further details on the number of possible

encodings, refer to [142].

Let i-sets be the set of µ Boolean functions in terms of the BS variables encoding FS

functions using one-hot encoding. Specifically, an i-set represents one FS function and takes

value 1 when an input assignment to the BS variables selects the corresponding FS function.

44

3.3 Boolean Decomposition into LUTs

Example 3.3.8. Continuing Example 3.3.6, the i-set corresponding to the FS function 0x8 is

1100100010001000 in binary format. Note that the truth table depends on N −P variables and

has value 1 when the original function is 0x8 or 0 otherwise. ▲

I-sets are used to derive a more compact encoding with a two-step procedure. The first step

enumerates candidate BS functions. The second one solves a unate covering problem, in which

columns are candidate BS functions and rows are pairs of FS functions to be distinguished.

Candidate BS functions are a set of functions depending on BS variables used as ti signals

encoding FSs. They are enumerated by combining i-sets. To leverage all the functional degrees

of freedom of a strict encoding, i-sets in a BS candidate can be either in the ON-set, OFF-set, or

don’t-care (DC) set. Since candidate BS functions are used as control inputs of a multiplexer,

they can distinguish elements in the ON-set (takes value 1) against elements in the OFF-set

(takes value 0). In encoding problems, BS functions are called dichotomies, while pairs of

functions to be distinguished can be interpreted as seed dichotomies [215]. Don’t-cares are

also important to minimize the support, which translates into fewer LUT fan-ins.

Example 3.3.9. Continuing Example 3.3.8, let us consider the candidate bound set function h

that has the i-sets {0x8, 0x1} in the ON-set, the i-set {0x4} in the OFF-set, and the i-set {0x0} in the

DC-set. Its function in the binary format is h =11-01--110101111 where “-” is a don’t care. When

h = 1, either 0x8 or 0x1 are selected. When h = 0, 0x4 is selected. The corresponding dichotomy is

{{0x8, 0x1},{0x4}}. In this case, function h distinguishes 0x8 from 0x4 and 0x1 from 0x4, covering

two seed dichotomies {{0x8},{0x4}} (or {{0x4},{0x8}}) and {{0x1},{0x4}} (or {{0x4},{0x1}}). ▲

A candidate BS function is generated by assigning each i-set to the ON-set, OFF-set, or

DC-set. Hence, the total number of possible BS candidate functions is 3µ. Nonetheless, this

bound can be greatly reduced. Some BS candidate functions are interchangeable, i.e., one

candidate can be obtained by swapping the ON-set and the OFF-set of another candidate.

Our enumeration removes these symmetries. Moreover, in a minimum-length encoding, each

candidate must have at least r i-sets in the ON-set and r i-sets in the OFF-set, where r is

defined as:

r (µ) =µ−2⌊log2(µ−1)⌋. (3.4)

Candidates that do not satisfy this constraint are eliminated as they cannot encode the FS

functions. For instance, if µ is a power of 2, then r = µ/2, implying that the FS functions

must be evenly distributed between ON-set and OFF-set, i.e., each candidate must distinguish

half of the FS functions against the other half. In a non-minimum encoding, r (µ) = 1, such

that each BS candidate function has some distinguishing power. The number of possible BS

candidate functions is given by the following formula depending on µ:

E (µ) = 1

2
·
µ−2r (µ)∑

i=0

[(
µ

i

)
·
µ−i−r (µ)∑

j=r (µ)

(
µ− i

j

)]
. (3.5)

Note that when µ is a power of 2, the number of possible BS candidate functions reduces to

45

Chapter 3 . Technology Mapping for FPGAs

Table 3.1: Comparison on decomposing 8-input practical functions using different ACD
settings for the encoding problem.

ACD mode Success rate (%) #LUTs #Edges Time (s)

No encoding (only partitioning) 100 277411 1399908 1.61
No don’t cares 100 277007 1331527 7.10
Default (DCs for µ< 8) 100 268954 1220771 7.15
Always don’t cares 100 268954 1220437 82.48

(µ
µ/2

)
/2.

A limitation of this method is that the number of candidates grows rapidly with increasing

column multiplicity. However, we may further reduce the number of BS candidate functions

when it is too large. In particular, for an ACD into 6-LUTs the maximum column multiplicity to

support is 16. In fact, for µ> 16 the function would require at least 5 BS functions, remaining

with one variable in the free set. But the number of unique functions that can be realized

using one variable is 22 = 4. Hence, the maximum column multiplicity for a 1 FS variable is

µ= 4. Equation 3.5 is maximized for µ= 13 with 91,377 candidate BS functions. To maintain

a reasonable number of candidates and to significantly reduce run time, our method does

not use the DC-set for problems with µ> 8, lowering the maximum number of candidates to

6,435. This simplification removes the leftmost sum and fixes i = 0 in Equation 3.5, resulting

in:

E ′(µ) = 1

2
·
µ−r (µ)∑
j=r (µ)

(
µ

j

)
. (3.6)

Experiments show that this restriction tends to improve run time without significantly im-

pacting the encoding quality, but using it for lower values of column multiplicity noticeably

compromises the quality.

To support this choice, we evaluated the decomposition quality for various configurations

of ACD on decomposing 107466 8-input practical functions extracted from the EPFL bench-

mark suite [3]. Generally, 8-input practical functions have a quite simple variable partitioning

problem but complex encoding since µ can reach value 16. The results are available in Ta-

ble 3.1, which shows the success rate, the total number of LUTs used, the total number of

edges, and the time to compute the decomposition. Mode no encoding shows the number

of LUTs without solving the encoding problem. Mode no don’t cares assigns i-sets only to the

ON-set or the OFF-set during the encoding. Mode default uses the DC-set for µ< 8. Lastly,

mode always don’t care always uses don’t care assignments. Table 3.1 shows that the default

mode has the best compromise between quality and run time. Mode always don’t care is slower

for a limited improvement in the number of edges. Moreover, the always don’t care mode

obtains exactly the same number of LUTs of default in practical 8-input functions, showing

that don’t cares are important for small µ values but not so much for higher values.

Each BS candidate function is associated with a cost that depends on the number of

46

3.3 Boolean Decomposition into LUTs

4 3 3
C9AF 1177 2727

{{0x8}, {0x0}} 1 0 1
{{0x8}, {0x4}} 1 1 0
{{0x8}, {0x1}} 0 1 1
{{0x0}, {0x4}} 0 1 1
{{0x0}, {0x1}} 1 1 0
{{0x4}, {0x1}} 1 0 1

Figure 3.5: Covering table to solve the encoding problem.

variables in its support. The number of variables is computed using a special procedure that

considers don’t cares. Each variable is checked individually. If the incompletely specified

BS candidate function remains equivalent when a variable is assigned both constant 0 and

constant 1, that variable is not in the functional support and can be removed. Then, a cov-

ering table is constructed by having all the pairs of FS functions to be distinguished (seed

dichotomies) as rows and the BS candidates as columns. A row-column entry (i , j) is 1 if the

BS candidate function of column j distinguishes the seed dichotomy i . A support-minimum

solution is computed by solving a minimum-cost covering problem [215]. The solution must

cover all the rows while minimizing the cost. We use greedy covering followed by local search

to compute a minimum-cost cover. A single iteration of greedy covering extracts one column

covering the most non-covered rows while minimizing the cost. The process is iterated until

a solution is found. Then, the solution is iteratively improved by replacing one column with

another column having a lower cost.

Example 3.3.10. Figure 3.5 shows a covering table reflecting the examples in this section. Each

column is a candidate BS function shown as a truth table in hexadecimal format on 4 variables.

Each BS candidate function has a cost based on the number of variables on its support (shown

in the figure above the BS function). Each row is a seed dichotomy. An element (i , j) in the table

is 1 if the BS j distinguishes the seed dichotomy i . The best solution with cost 6 takes the second

and third columns and leads to two BS functions depending on 3 variables. ▲

Given a solution, an encoding of the FS functions is obtained by assigning a code T =
tM−1 . . . t0, in which each signals ti corresponds to a selected BSi candidate.

Example 3.3.11. Continuing Example 3.3.10, a minimum cover results in BS0 = 0x1177, by

putting 0x4 and 0x1 in the ON-set, and BS1 = 0x2727 by putting 0x0 and 0x1 in the ON-set.

Both bound sets depend only on 3 variables. Given the BS functions, the encoding of the FS

functions assigns the following codes to gi in Figure 3.2: T0x8 = 00, T0x4 = 01, T0x0 = 10, and

T0x1 = 11. Finally, the composition function is computed using the FS functions and the selected

encoding, resulting in function 0x1048, in hexadecimal format. Consequently, the function has

been successfully decomposed using three 4-LUTs. The final result of decomposition is shown in

Figure 3.6, after minimizing the support of BS functions. ▲

47

Chapter 3 . Technology Mapping for FPGAs

00 01 10 11

0x27 0x17

0x8 0x4 0x0 0x1

x4 x3 x2 x5 x3 x2 x1 x0

Figure 3.6: AC decomposition of Boolean function 0x880480018414811.

3.3.4 Maximizing the Shared Set

The number of LUTs required to implement the BS functions can be minimized using the

shared set. In Section 3.3.3, we presented a generic method to find an encoding that minimizes

the LUT count and the support size. Alternatively, to check whether a decomposition with

L ∈ [0, M) single-variable functions (or buffers) and M −L non-buffer BS functions exists, our

method may enumerate subsets of L out of N −P variables, with a total of
(N−P

L

)
subsets.

For each subset, the method checks if the number of unique FS functions in each cofactor

with respect to L variables does not exceed 2M−L . If this is the case, a decomposition with L

variables in the shared set exists.

Example 3.3.12. Consider the truth table 0xffff0880ffff0000 with P = 2 and unique FS functions

0xf, 0x0, and 0x8. Let us check the existence for a shared set when M = 2 using L = 1. If the

most significant variable is in the SS, the truth table is divided into two cofactors 0xffff0880 and

0xffff0000. The number of unique FS functions in the first cofactor exceeds 22−1 = 2. Hence, the

most significant variable cannot be shared. However, the second most significant variable, with

cofactors 0xffffffff and 0x08800000, can be shared. ▲

3.3.5 Boolean Decomposition into Two LUTs

A decomposition into two LUTs is a special type of ACD with a single BS function and possibly

multiple SS variables. Since BS functions are limited to one, the problem has a lower complex-

ity than the generic case. Here we propose a dedicated algorithm to solve this problem more

efficiently.

For a truth table on N variables, a “kk” decomposition may exist for N < 2 ·k. According

to Theorems 3.3.2 and 3.3.3, it is sufficient to test the decomposition for P = N −k, when

allowing for multiple variables in the shared set. Specifically, this is the minimum number

of variables to have a k-feasible bound set and a decomposition. Note that a decomposition

with P < N −k (or N −P > k) may exist only if there are at least y independent variables in

the shared set, such that P + y = N −k. Since, by Theorem 3.3.2, ISS variables can always be

48

3.3 Boolean Decomposition into LUTs

Algorithm 3.1: ACD into two LUTs

Input: Truth table t t , number of variables N , LUT size k
Output: Decomposition if it exists

1 P ← N −k
2 Per m ← {0,1,2, . . . , N −1}

3 for
(N

P

)
iterations do

4 µ← compute_multiplicity(t t , P)
5 Lmi n ←⌈log2µ⌉−1; ▷ Required variables in SS
6 if P +Lmi n < k then
7 x⃗ss ← compute_shared_set(t t , N , P , k, Lmi n)
8 if P + |⃗xss | < k then
9 return decompose(t t , N , P , k, Per m, x⃗ss)

10 t t ← next_combination(t t , N , P , Per m)

11 return not decomposable

moved into the free set, and, by Theorem 3.3.3 a smaller free set has more solutions than a

larger one, P = N −k is the only necessary FS size to check.

Algorithm 3.1 shows a sequence of steps to perform a decomposition into two LUTs. The

algorithm takes as inputs a truth table t t , the number of its support variables N , and the LUT

size k. First, P and the permutation vector Per m are initialized. Vector Per m is necessary to

track the order of the variables during the enumeration of combinations, compared to the

original one, and to compute the next combination. A loop iterates over all the possible P

combinations of N . The method next_combination (at line 10) computes a new combination

from the previous one by swapping one variable in the FS with one in the BS. The returned

truth table reflects the new variable order. The column multiplicity µ is computed for the truth

table t t (at line 4). If µ= 2, a decomposition exists with one BS function. Since the structure

is limited to one BS function, for µ > 2 the method searches for SS variables. First, Lmi n is

computed to minimize the number of shared variables. Then, the algorithm searches for a

shared set of L elements, employing the techniques of Section 3.3.4. The search for a shared set

is performed for Lmi n ≤ L < k −P , which also allows for non-minimum-length encodings. If a

shared set exists, the corresponding decomposition is returned. Otherwise, if the conditions

in the for loop are not met, the function is not decomposable into 2 LUTs.

In case of an implementation constraining the maximum number of variables in the SS,

Algorithm 3.1 is modified to additionally explore different sizes P , similarly to Algorithm 3.3.

This is because Theorem 3.3.3 is not valid when limiting the maximum number of BS functions

and SS variables because it constraints the maximum value of encoding M . Hence, when

⌈log2(µ)⌉ > Mmax there might be ISS variables to include in the FS to make ⌈log2(µ′)⌉ ≤ Mmax .

49

Chapter 3 . Technology Mapping for FPGAs

3.3.6 Boolean Decomposition Beyond 2 Levels

Previous subsections discuss methods for partitioning variables into bound and free sets,

solving the functional encoding problem, and extracting the shared set. These algorithms

primarily address the case when Boolean functions can be decomposed into two levels of logic.

This subsection provides a preliminary exploration of methods to perform ACD to multiple

logic levels. Specifically, we first propose a recursive formulation. Then, we discuss possible

improvements for scalability based on BDDs.

In the cases when Boolean function cannot be decomposed into two levels of LUTs, a

recursive approach may be employed. When decomposing a function into k-input LUTs, a

bound set of size exceeding k may help to simplify the function by removing the dependency

on some variables for another round of ACD. In practice, multi-level ACD performs a recursive

support-reducing decomposition until a feasible k-feasible bound set with a solution exists. In

this subsection, we propose a method that extends Algorithm 3.1 for multi-level ACD, resulting

in a cascade structure of LUTs. This approach is heuristic and not exact, as it selects only one

feasible support-reducing decomposition among the possible options.

Algorithm 3.2 illustrates a possible implementation of the ACD into k-input LUTs resulting

in a cascade structure. Initially, procedure ACD takes the truth table of the function to be

decomposed, the number of variables N , and the LUT size k. The first step attempts a

decomposition into 2 levels of LUTs using Algorithm 3.1 (lines 3 to 6). In this case, a solution

exists only if N < 2 ·k. If this decomposition is feasible, it is returned, otherwise, the algorithm

tries a generic support-reducing step. The support-reducing step decomposes the function

by having more than k variables in the bound set. To maximize the number of variables in

the free set, as a way of heuristically simplifying the bound set function, the search starts with

i = k −1 variables in the FS and decreases to i = 1 (lines 8 to 12). Algorithm 3.1 is employed

again to find a solution with an (N − i)-variable BS (line 9). If a solution exists, the remainder

BS function is further decomposed by recursively calling function ACD. If no solution is found,

the algorithm terminates without a successful decomposition.

Algorithm 3.2 demonstrates how the algorithms presented in this chapter can be used to

decompose functions into multiple levels of LUTs. However, the proposed method has high

computational complexity and may suffer from long run times, making it impractical in large

designs, even when the method operates on functions of 16 variables (the upper limit for a

truth table implementation). Developing more efficient algorithms is an area for future work.

One potential way to improve the scalability of the method is by using BDDs. Many

implementations of Boolean decomposition were based on BDDs since they are easy to

manipulate and they can be constructed for most of the practical function up to 50 input

variables. In this chapter, we presented more efficient and powerful algorithms to compute

ACD based on truth tables. However, these method are often impractical when the truth

table depends on many variables (> 16) or when the decomposition requires multiple levels

of logic. In such cases, a BDD-based implementation may offer advantages. For instance,

50

3.3 Boolean Decomposition into LUTs

Algorithm 3.2: Recursive ACD cascade into multiple logic levels

Input: Truth table t t , number of variables N , LUT size k
Output: Decomposition if it exists

1 Algorithm ACD(t t , N , k)
2 D ←Λ

3 if N < 2 ·k then
4 D ← acd_two_luts(t t , N , k) ▷ Run Algorithm 3.1
5 if D is feasible then
6 return D

7 P ←∞
8 foreach Free set size i from k −1 to 1 do
9 D ← acd_two_luts(t t , N , N − i) ▷ Run Algorithm 3.1

10 if D is feasible then
11 P ← free_set_size(D)
12 break

13 if P =∞ then
14 return not decomposable

15 R ← get_reminder_function(D)
16 Rd ← ACD(R, N −P, k)
17 if Rd is decomposable then
18 return compose_decomposition(D , Rd)

19 return not decomposable

if a decomposition into a cascade of k-LUTs exists, the BDD should be “slim” so that it is

possible to draw variable partitions that satisfy the ACD conditions (as a proxy for low column

multiplicity). Instead of evaluating every possible variable ordering, ACD can leverage BDD

heuristic re-ordering to minimize the number of BDD nodes and use a filter on the relationship

between the number of variables and the number of BDD nodes to estimate the feasibility of

the decomposition. If the input delay profile is available, it can also be used to fix the ordering

of the variables. This approach can improve the practicality and efficiency of multiple-level

ACD.

3.3.7 Experimental Results

This section presents an experimental evaluation of the proposed Ashenhurst-Curtis Decom-

position (ACD) algorithms. We evaluate the performance of our ACD methods in decomposing

functions by comparing them against other implementations of Boolean decomposition

in ABC. Specifically, we test the number of functions that can be successfully decomposed

and the run time needed. We run this experiment on practical functions, i.e., functions col-

lected in hardware designs and benchmark suits, which include fully-decomposable, partially-

decomposable, and non-decomposable functions over the bases AND, XOR, and MUX. A set

51

Chapter 3 . Technology Mapping for FPGAs

of N -input practical functions tends to be much smaller than a set containing all N -input

functions since designs are never completely random. We extract practical functions from the

EPFL benchmarks [3] by recording all the functions encountered during cut enumeration in a

technology mapper. Since the number of practical functions can be large, we classify them

into N P N -equivalence classes employing the heuristic sifting algorithm [82, 182]. Note that

if a function in an N P N -equivalence class is decomposable, all the functions in the same

class are also decomposable (the N P N transformation can be applied after decomposition).

Decomposition success rate

Table 3.2 and Table 3.3 show the percentage of decomposable functions and the run time for

different methods and support sizes. For instance, the first column of Table 3.2 contains results

for decomposing practical 5-input functions, where (1233) indicates the number of unique

functions collected after computing N P N canonical forms. Each row of the tables show

one ACD method. Row DSD computes a decomposition graph of the function into AND and

XOR primitives, with possible inverters. Then, the graph is mapped to 4-input (in Table 3.2) or

6-input (in Table 3.3) LUTs using a structural LUT mapper. The decomposition graph employs

top and bottom disjoint-support decomposition (see, e.g., Section 4.3.1 in Chapter 4 or [25,

36]) and Shannon decomposition, when the function is not fully-DSD-decomposable. The

DSD method is used to evaluate the ability of classical AIG and XAG logic synthesis methods to

find a minimum-size implementation. Row S44 presents the state-of-the-art method in [165]

to decompose into a LUT structure composed of two 4-LUTs. Similarly, S66 performs the same

approach for 6-LUTs. Note that S44 and S66 support no more than one variable in the shared

set. The next approach lutpack [133]1 performs a heuristic ACD using DSD and the Shannon

expansion, supporting up to 3 variables in the shared set. Then, we present two variants of

the ACD method of Section 3.3.5 to find decompositions into LUT structures composed of

two 4-input (in Table 3.2) or 6-input (in Table 3.3) LUTs, denoted by J44 and J66, respectively.

The 1-SS version uses up to one variable in the SS to better compare against S44 and S66.

Meanwhile, the M-SS version has no restrictions on the number of SS variables. Additionally,

Table 3.2 shows the results of a SAT-based exact synthesis formulation [69] to compute the

minimum-size decompositions. Note that this latter method is restricted to 4-input LUTs due

to its poor scalability.

Table 3.2 shows that the approaches described in this paper significantly outperform all the

previous state-of-the-art methods while achieving proven optimum results in decomposition

success. In particular, J44 1-SS has a significantly better success rate in all columns and

better run time, compared to S44. This underlines the limitation of the heuristics used in S44.

Moreover, the experiment shows that heuristics take more run time than our exact formulation.

J44 M-SS further improves the results for 5-input functions while maintaining dominant run

time. Note that J44 M-SS matches the success rate of SAT while being up to 7661 times faster.

1We modified lutpack in ABC to perform only the decomposition required by the experiment without the
overhead of the resynthesis engine.

52

3.3 Boolean Decomposition into LUTs

Table 3.2: Decomposition success ratio into two 4-LUTs for practical functions using different
ACD methods.

ACD type 5 vars (1233) 6 vars (7351) 7 vars (41071)
Success (%) Time (s) Success (%) Time (s) Success (%) Time (s)

DSD-44 55.31% 0.25 23.30% 1.81 16.52% 11.8
S44 [165] 83.94% 0.01 56.09% 0.05 16.36% 0.27
lutpack [133] 91.08% 0.34 45.65% 2.11 18.70% 12.72
J44 1-SS 88.00% 0.00 64.22% 0.02 20.86% 0.10
J44 M-SS 96.67% 0.00 64.22% 0.02 20.86% 0.10
SAT 96.67% 1.47 64.22% 34.98 20.86% 766.11

Table 3.3: Decomposition success ratio into two 6-LUTs for practical functions using different
ACD methods.

ACD type 7 vars (41071) 8 vars (107466) 9 vars (195602) 10 vars (313649) 11 vars (404991)
Success (%) Time(s) Success (%) Time(s) Success (%) Time(s) Success (%) Time(s) Success (%) Time(s)

DSD-66 85.52% 12.86 54.12% 48.35 42.16% 104.32 32.72% 214.86 21.95% 373.63
S66 [165] 84.18% 0.60 69.24% 2.57 52.13% 4.99 37.36% 6.99 19.14% 9.79
lutpack [133] 98.34% 20.39 83.47% 64.37 69.92% 154.38 48.95% 334.79 26.87% 897.55
J66 1-SS 97.30% 0.28 82.23% 1.41 74.24% 4.20 63.06% 9.39 32.88% 16.43
J66 M-SS 99.82% 0.30 92.94% 3.08 84.71% 9.92 63.06% 9.73 32.88% 16.58

Table 3.3 further shows that the approaches described in this paper outperform state-of-

the-art. This experiment is even more significant than the previous one due to the additional

complexity of the problem. In particular, J66 1-SS has a significantly better success rate in

all columns and better run time up to 9-input functions, compared to S66. Notably, while

searching for a decomposition with the same characteristics, J66 1-SS always finds a solution if

it exists (under the 1-SS limitation), while S66 does not always find it because it uses heuristics.

This leads to an improvement in success rate that peaks at 25.7%. This table shows the

potential of the methods proposed in this work, which can outperform state-of-the-art in

quality and run time. J66 M-SS further improves the results for functions between 7 and

9 inputs, with an improvement that peaks at 32.58%, compared to S66. Regarding the run

time, while Table 3.3 shows that S66 is generally faster than J66, J66 is, on average, faster

for decomposable functions and considerably slower for non-decomposable ones. In fact,

J66 enumerates all the possible free sets to find a solution if it exists, while S66 limits the

exploration to a smaller subspace.

Decomposition success rate for delay optimization

We extend the previous experiment for 6-input LUTs to evaluate delay minimization using

the proposed ACD methods. This experiment tests the success rate of a delay-minimal de-

composition for practical functions given delay-critical variables required to be in the free set.

Informally, for delay-critical variables with delay D , this experiment checks the existence of a

decomposition with delay D +1. The other variables are considered to have delay D −1. We

only consider J66 M-SS and generic ACD, which integrates the search for a feasible free set (in

53

Chapter 3 . Technology Mapping for FPGAs

Table 3.4: Decomposition success ratio into 2 levels of 6-LUTs for practical functions given
late arriving variables.

N late ACD type 7 vars 8 vars 9 vars 10 vars 11 vars

0
lutpack [133] 99.01% 88.25% 84.65% 75.25% 26.87%
J66 M-SS 99.82% 92.94% 84.71% 63.06% 32.88%
Generic 100.00% 100.00% 98.05% 90.20% 32.88%

1
J66 M-SS 96.59% 79.60% 61.51% 37.35% 16.54%
Generic 100.00% 100.00% 97.57% 83.23% 16.54%

2
J66 M-SS 86.22% 59.78% 39.28% 23.74% 10.95%
Generic 100.00% 100.00% 94.19% 66.56% 10.95%

3
J66 M-SS 65.11% 36.37% 21.25% 13.78% 6.96%
Generic 93.78% 86.03% 76.82% 44.51% 6.96%

4
J66 M-SS 36.96% 17.00% 8.62% 7.21% 4.43%
Generic 54.55% 40.42% 25.45% 23.70% 4.43%

5
J66 M-SS 14.52% 5.42% 2.96% 2.84% 2.61%
Generic 14.52% 5.42% 2.96% 2.84% 2.61%

Section 3.3.2) and the generic functional encoding problem (in Section 3.3.3) to compute the

decomposition, since other known methods do not perform delay minimization using input

arrival times. We show lutpack [133] only for the first row to perform a 2-level decomposition,

without limiting the number of LUTs. For each function, we randomly generate up to 10

unique sets of delay-critical variables and test the decomposition for each one of them.

Table 3.4 shows the success rate of decomposing practical functions based on the number

of delay-critical variables, shown in column “N late”. Generic ACD has a high success rate in

most cases. Limitations occur when the number of delay-critical variables exceeds 3 or the

number of variables in the support is 10 or more. Generally, the decomposition of 11-input

functions is rare. However, many 10 input functions are still decomposable. Furthermore, the

table highlights the advantages of using multiple BS functions, with a success rate difference

between J66 and generic that peaks at 55.57% for 9-input functions, given 3 delay-critical

variables. Thus, in this case, it is 55% more likely to find a solution to a delay-driven decompo-

sition problem if we consider the most general two-level ACD formulation, compared to the

case when only J66 is used.

Decomposition success rate on multiple levels

In this experiment, we evaluate the recursive ACD algorithm, shown in Algorithm 3.2, to find

decompositions of Boolean functions into at a cascade of LUTs of at most three levels (3 LUTs

in 3 levels). We use the same practical functions of previous experiments, but up to 15 inputs,

to map into 6-input LUTs. For this experiment, we use up to one variable in the shared-set.

Similarly to Table 3.3, we report the success rate for practical functions depending on a variable

number of inputs.

54

3.4 Technology Mapping with Boolean Decomposition

Table 3.5: Decomposition success ratio into two or three levels of 6-LUTs for practical functions
using our ACD methods.

Num Vars. J66 1-SS J666 1-SS
Success (%) Time (s) Success (%) Time (s)

7 (39964) 97.30% 0.28 97.30% 0.37
8 (92897) 82.23% 1.41 86.44% 1.82
9 (161642) 74.24% 4.20 82.64% 6.83
10 (240531) 63.06% 9.39 76.69% 19.88
11 (290166) 32.88% 16.43 71.65% 57.64
12 (305480) - - 65.40% 154.75
13 (283457) - - 53.84% 328.30
14 (248555) - - 43.31% 697.80
15 (169998) - - 28.70% 1522.06

Table 3.5 shows the results comparing ACD into two levels of 6-LUTs to the recursive ACD

to three levels of 6-LUTs, named J666. The proposed ACD on three levels works well and

scales decently for functions up to 13 inputs. For instance, the decomposition time 12-input

variable functions the decomposition time per function is approximately of 500 microseconds.

We speculate that there is a good margin of improvement by not considering all the possible

P-variable partitions at each level, but using a heuristic method (e.g., BDD variable reordering).

Future work will consider researching more sophisticated and scalable methods to address

this problem while maintaining a similar success rate.

3.4 Technology Mapping with Boolean Decomposition

In this section, we leverage the Ashenhurst-Curtis decomposition (ACD) methods described

in Section 3.3 to improve the delay of LUT networks. ACD can be used in two ways: 1) as part

of LUT mapping, or 2) as a post-mapping resynthesis method to compact logic and decrease

the delay. In this work, we focus on the former usage since it has more flexibility and offers

good optimization opportunities. While this work does not cover post-mapping resynthesis,

its implementation would involve extracting cuts consisting of a few LUTs, computing the cut

function as a truth table, and finally performing ACD. If the new implementation is better, it

replaces the old one. For an example of how this resynthesis engine could be implemented,

we refer the reader to [138]. First, this section discusses how to perform delay-oriented

functional decomposition for any number FS variables and BS functions. Then, it describes

the integration of ACD in a technology mapper. Finally, we present the experimental results of

the performance-driven technology mapper with ACD. We demonstrate that our technology

mapping approach improves the state-of-the-art LUT mapper in ABC with choices by 12.39%

in delay and 2.20% in area, on average. Additionally, we present 4 new best results in the EPFL

synthesis competition.

55

Chapter 3 . Technology Mapping for FPGAs

3.4.1 Delay-oriented ACD

Let us consider a node n in a k-LUT network and a cut C rooted in n that contains leaves in

the input sub-network of n. Among all the leaves, some are timing-critical and some are not.

Let D be the latest arrival time of a leaf in C . We use ACD to find an implementation that

realizes the function of cut C with delay D +1, when |C | > k, assuming a unit-delay model.

Specifically, we put the timing-critical leaves of C into the FS and other non-critical ones into

the BS or SS. This transformation, when applied on the critical path, may reduce the worst

delay of a LUT network.

The ACD-based transformation is performed in two steps. First, our method verifies the

existence of a delay-minimizing decomposition. Second, if a decomposition exists, it solves

the encoding problem and returns a solution.

Checking the existence of a decomposition

Algorithm 3.3 shows the procedure evaluate used to check the existence of an ACD. The

algorithm receives the function represented as a truth table t t of a large cut of size N where

N > k. Set S contains a list of timing-critical variables with delay D. First, the truth table is

transformed to have critical variables as the least significant ones since they must be in the

FS (at line 1). The proposed approach limits N −P ≤ k targetting a two-level decomposition

without solving the encoding problem. Hence, the number of variables in the FS must be

at least P ≥ N −k, and P ≥ |S| to include all the delay-critical variables (in line 4). For each

FS of Pi variables, the column multiplicity value is computed using the method described

in Section 3.3.2, and the smallest one is returned (at line 5). In this case, since delay-critical

variables are always part of the FS,
(N

Pi−|S|
)

different combinations are enumerated. If the

configuration with the smallest column multiplicity is implementable using at most k −Pi

BS functions, a delay-minimizing ACD exists. In this case, variables in the FS have the delay

increase of 1 while other variables have the delay increase of 2 (at line 12). If, on the other

hand, a decomposition with Pi does not exist, the function is not decomposable.

The loop in line 4 checks the existence of a decomposition starting with a smaller value of

P . Notably, if a decomposition with P does not exist, neither does it exist with P +1, according

to Theorem 3.3.3. Then, if a decomposition exists, the loop attempts to identify independent

shared-set variables (ISS) to add to the free set, according to Theorem 3.3.2. Specifically,

maximizing the free set to include non-critical variables has multiple benefits. First of all,

the decomposition would have a reduced column multiplicity, which simplifies the encoding

problem. Additionally, including ISS in the FS may reduce the required time of the associated

non-critical signals, facilitating area recovery during technology mapping.

56

3.4 Technology Mapping with Boolean Decomposition

Algorithm 3.3: ACD evaluation

Input: Truth table t t , LUT size k, Late vars set S
Output: Propagation delay

1 reorder_variables(t t , S)
2 µbest ←∞
3 x⃗ f s ←;
4 for Pi ← max(num_vars(t t)−k, |S|) to k −1 do
5 {µ, x⃗ ′

f s} ← compute_smallest_multiplicity(t t , Pi , |S|)
6 if µ≤ 2k−Pi and µ<µbest then
7 µbest ←µ

8 x⃗ f s ← x⃗ ′
f s

9 continue

10 break

11 if µbest ̸=∞ then
12 return compute_propagation_delay(t t , x⃗ f s)

13 return infinite_propagation_delay()

Computing the decomposition

After applying evaluate, another procedure decompose computes the actual decomposition,

as described in Section 3.3.3.

3.4.2 Technology Mapping Algorithm with ACD

The methods described in Section 3.4.1 have been integrated into an LUT mapping algorithm.

State-of-the-art technology mapping typically performs delay minimization followed by multi-

ple iterations to recover area [141]. Each mapping iteration computes k-feasible cuts rooted in

nodes of the subject graphs and selects one best cut for each node based on the cost function

and slack. Typically, enumerated cuts are k-feasible, that is, can be implemented by a k-LUT.

In our implementation, cut enumeration computes large cuts up to size k < l ≤ 11, where

l is provided by the user. During cut enumeration, the mapper computes cut functions as

truth tables. For the non-k-feasible computed cuts, the mapper uses Algorithm 3.3 to check

the existence of a delay-minimizing decomposition into k-LUTs. If a decomposition does

not exist, the cut is discarded. If a decomposition exists, the cut delay is computed using the

propagation delay returned by Algorithm 3.3. The area is estimated using column multiplicity.

Specifically, to have precise area information, i.e., the number of required LUTs, ACD has to

solve the encoding problem and compute the decomposition. However, experimentally, not

running the decomposition on the fly reduces the run time considerably with a negligible

impact on the final area. The area is estimated conservatively, neglecting the existence of a

shared set, i.e., Ar ea = ⌈log2µ⌉+1.

The mapper uses l-feasible cuts with ACD in the delay mapping pass, while it uses k-

57

Chapter 3 . Technology Mapping for FPGAs

feasible cuts in the following area recovery. Note that area recovery aims at improving the

solution over non-critical paths and can re-use the best cuts from the previous passes, while

assuring that the required times are met. After the last mapping pass, a cover is generated

consisting of k- and l -feasible cuts. At this stage, the mapper decomposes non-k-feasible cuts

into k-LUTs.

3.4.3 Experimental Results

This section presents an experimental evaluation of the proposed delay-driven LUT mapping

with ACD. First, we evaluate our mapper comparing it with the state-of-the-art mapper in

ABC. Second, we present new best results in the EPFL synthesis competition [57]. While the

experiments are reported for 6-input LUTs, similar improvements have been obtained for

4-input LUTs. For our experiments, we use the EPFL combinational benchmark suite [3]

containing several circuits provided as and-inverter graphs (AIGs). The baseline has been

obtained using the following script “dfraig; resyn; resyn2; resyn2rs; if -y -K 6;
resyn2rs;” in ABC, which perform a high-effort size and depth AIG optimization. In particu-

lar, it combines SAT sweeping [139], scripts for delay-oriented AIG optimization [132], and

lazy man’s logic synthesis [216], which is the most aggressive depth minimization for AIGs in

ABC. The experiments have been conducted on an Intel i5 quad-core 2GHz on MacOS. The

results have been verified using combinational equivalent checkering in ABC.

The proposed methods have been implemented and are available in the open-source logic

synthesis framework ABC [30]. We extended the LUT mapper if to perform ACD, as discussed

in Sections 3.4 and 3.5. The following commands are used in the experiments:

• dch (-f): computes structural choices used to mitigate the structural bias [37], where

-f stands for “fast”;

• if -K 6: performs delay-oriented technology mapping with choices into 6-LUTs using

6-feasible cuts;

• if -s -S 66 -K 8: performs delay-oriented technology mapping using 8-feasible cuts

and decomposes logic for minimal delay into two 6-LUTs using a SAT-based formulation;

• if -Z 6 -K 8: performs technology mapping into 6-LUTs using the proposed delay-

oriented implementation of ACD described in Section 3.4 on 8-feasible cuts;

• if -S 66: performs technology mapping based on a given LUT library and packs logic

into a structure composed of two 6-LUTs using the ACD method from [165];

• if -J 66: performs technology mapping based on a given LUT library and packs logic

into a structure composed of two 6-LUTs using the ACD method described in Section 3.5;

• st: derives an AIG from an LUT network.

58

3.4 Technology Mapping with Boolean Decomposition

Delay-driven LUT mapping

Table 3.6 compares four technology mapping strategies for delay minimization during map-

ping into 6-LUTs, assuming a unit-delay model. Each strategy takes the baseline as an input

and computes structural choices before mapping. Structural choices have not been used for

the benchmark hyp due to a known bug in ABC. The proposed method is compared against

standard LUT mapping and mapping into LUT structures. In the rightmost column, command

ACD denotes the sequence “dch; if -Z 6 -K 8”. We do not compare against [165] and [133]

because those methods perform only area-oriented ACD. Furthermore, we do not compare

against the recent mapper with gate decomposition based on bin-backing [58] because it can

improve the delay of standard ABC if by only 0.31% on average.

Mapping into LUT structures “66” composed of two 6-LUTs, which is based on a limited

version of structural ACD, reduces depth by 1.04% and the area by 2.57% on average, at the cost

of increasing the number of edges by 2.57%. The proposed LUT mapping with ACD improves

the depth of the LUT network by 7.52% on average while increasing the number of LUTs and

edges by 8.13% and 7.87%, respectively.

Note that most of the improvements are due to the first 10 benchmarks since others are

already close to their optimal depth. For 4 of them, the delay reduction exceeds 20% and

is up to 27.27%. Practically, part of the area increase can be reduced by area recovery [133,

135, 177], using delay relaxation, or by an additional mapping step applied after ACD. The

rightmost strategy performs the latter option. The LUT count and edge count are reduced

considerably, leading to an area improvement of 2.20%, compared to traditional technology

mapping with choices. Also, the logical depth further decreases up to 54.55%. To achieve

this, the LUT network after ACD is used as a structural choice to improve the next round of

mapping because choices extracted from mapping with ACD are more structurally suited to

delay-oriented mapping, compared to the original AIG. Moreover, structural choices help

reduce the area on the non-critical paths. Note that a second mapping round does not give

practical benefits if applied after the default LUT mapper (leftmost column) since the network

after deriving the AIG is structurally similar to the baseline. Furthermore, benchmark hyp is

noticeably improved by remapping both in area and delay, although it does not use structural

choices. Regarding the run time, mapping with ACD is much faster than mapping into LUT

structures while being more general.

EPFL synthesis competition

In Table 3.7, we show that ACD-based LUT mapping can improve well optimized LUT networks,

resulting in best known results for 4 benchmarks in the ongoing EPFL synthesis competition.

The previous best results were obtained using a portfolio of heavy logic optimization applied

to various representations, such as AIGs and LUT networks. In recent years, results have been

further improved using design-space exploration (DSE) techniques that incrementally generate

optimization scripts and visit multiple points of the design space. Examples of these methods

59

Chapter 3 . Technology Mapping for FPGAs

Table 3.6: Comparison of delay-driven LUT mapping, LUT mapping to “66” structure, and
LUT mapping using ACD.

Benchmark dch; if -K 6 dch; if -s -S 66 -K 8 dch; if -Z 6 -K 8 ACD; st; dch -f; if -K 6
LUTs Edges Depth Time (s) LUTs Edges Depth Time (s) LUTs Edges Depth Time (s) LUTs Edges Depth Time (s)

adder 363 1433 22 0.18 362 1465 20 0.28 383 1519 16 0.20 353 1518 10 0.39
bar 1664 9344 4 0.44 1664 9344 4 0.57 1664 9344 4 0.47 1006 5274 4 0.76
div 8618 32394 406 6.62 9107 33665 397 13.42 11644 44496 326 7.16 9068 39167 271 21.19
hyp 58393 239097 1864 5.43 61701 247699 1840 31.82 65615 264998 1396 11.13 61769 263254 1034 19.76
log2 9712 43562 58 17.05 10172 44943 58 30.06 10313 46365 56 17.81 9429 42533 57 39.09
max 831 3804 14 0.37 840 3668 14 0.63 1211 5578 12 0.42 871 4277 11 1.39
multiplier 7383 34137 36 6.01 7334 32781 36 12.11 7693 35798 33 6.82 6800 31705 31 13.32
sin 1928 8445 30 1.31 1948 8463 30 4.94 2052 8913 29 1.50 1830 8178 30 2.91
sqrt 7515 29573 663 4.17 7972 30610 638 12.66 10156 38558 519 4.73 9292 36030 476 8.77
square 4122 17319 23 1.98 4165 17547 22 3.91 4107 17924 18 2.22 4118 18285 14 5.15
arbiter 1833 8982 6 1.64 1879 8836 6 2.02 1850 8987 6 1.70 2037 8780 6 3.33
cavlc 137 707 4 0.13 104 491 4 0.56 137 707 4 0.15 123 655 4 0.20
ctrl 30 133 2 0.07 28 127 2 0.08 30 133 2 0.08 29 126 2 0.08
dec 287 684 2 0.09 287 1404 2 0.1 287 684 2 0.10 284 816 2 0.12
i2c 312 1360 3 0.16 306 1316 3 0.36 319 1378 3 0.19 297 1329 3 0.27
int2float 52 258 3 0.08 46 205 3 0.18 52 258 3 0.09 50 251 3 0.11
mem_ctrl 11037 48812 18 10.24 10830 46368 18 31.67 11232 49483 17 11.40 10398 45793 16 20.57
priority 178 725 6 0.11 182 736 6 0.18 185 736 6 0.12 171 698 6 0.17
router 89 285 4 0.09 61 283 4 0.14 92 290 4 0.09 89 279 4 0.12
voter 1838 8596 13 2.23 1784 8624 13 4.14 1838 8583 13 2.32 1777 8426 13 4.82

Improvement 2.57% -2.57% 1.04% -8.13% -7.87% 7.52% 2.20% -0.30% 12.39%
Total 58.40 149.83 68.70 142.52

are: Bayesian optimization [66], reinforcement learning [154, 220], machine learning, and

other heuristic approaches.

We compete in the best delay competition by using standard delay-oriented scripts in

ABC and LUT mapping with ACD. We do not use DSE to show that the proposed method

outperforms or gets close to the best results in the competition. We obtain the optimized

AIGs by repeatedly running the script used in the baseline of Table 3.6 along with additional

delay-oriented AIG commands in ABC. For the resulting AIGs, we compare traditional LUT

mapping with choices and LUT mapping with ACD. The results are shown in Table 3.7. Notably,

results by the traditional mapper are quite far from the best results. This observation shows

that our technology-independent optimization finds worse AIGs than those used to obtain the

best results, as expected. However, LUT mapping with ACD matches or improves the depth for

almost all the benchmarks. The improved benchmarks are hyp, log2, multiplier, and square.

Remarkably, our method reduces the depth of hyp by 10 levels, compared to state-of-the-art

while also reducing area by 15%. In the benchmark multiplier, our result matches the depth

but improves the number of LUTs. Benchmark sin is the only one where there is a large gap

compared to the best result. The best result for sin requires brute-force cofactoring, which is

not performed in our synthesis flow.

Unlike many other methods used to produce the best results, our results in Table 3.7 are

obtained directly by LUT mapping without post-mapping optimization. For instance, if we

use LUT resubstitution, the area of multiplier is further reduced to 6499 nodes. Even better

results are expected by integrating ACD-based LUT mapping into a DSE flow.

60

3.5 Improving Delay Leveraging Non-routable FPGA Connections

Table 3.7: LUT mapping in the EPFL synthesis competition.

Benchmark Best [57] dch -f; if -K 6 dch -f; if -Z 6 -K 10
LUTs Depth LUTs Depth LUTs Depth

adder 347 5 360 6 445 5
bar 512 4 512 4 512 4
div 25318 175 23461 192 31526 175
hyp 182723 483 122394 511 154903 473
log2 8617 52 8778 60 9613 51
max 1114 6 1113 7 1250 6
multiplier 7785 25 6839 28 6903 25
sin 680530 10 1820 33 2379 27
sqrt 29593 162 30945 172 41626 156
square 3732 10 4189 11 4275 10

3.5 Improving Delay Leveraging Non-routable FPGA Connections

As mentioned in Section 3.1, the delay in the modern FPGAs is often dominated by that of

programmable interconnect. To reduce the need for signal routing, one approach modifies the

FPGA architecture to include non-routable connections between adjacent LUTs. For instance,

recent FPGAs produced by AMD have configurable logic blocks (CLBs) divided into slices.

A slice contains 8 LUTs that can be connected independently, with external routing, or in a

cascade fashion using internal direct connections [10]. Specifically, a slice LUT LU Ti , with

0 ≤ i < 8, may connect one of its 6 inputs to LU Ti−1, forming a cascade structure. An in-slice

cascade connection is 10 to 40 times faster than standard interconnect, which helps delay

optimization.

Although in-slice non-routable connections are available, LUT networks generated by the

traditional LUT mapping do not use them efficiently. This is because a placement algorithm

may fully leverage non-routable connections only for LUTs on the critical path with one critical

fan-in. In practice, however, LUTs on the critical path tend to have multiple critical fan-ins,

making it hard for the placement algorithm to utilize cascade structures.

An efficient way to leverage cascade connections is to generate mappings of LUTs into

cascades during technology mapping. LUT cascades can be generated by decomposing large

non-k-feasible functions. In this implementation, we use the ACD method of Section 3.3.5

(Algorithm 3.1) to compute decompositions into specific structures of two LUTs, called “kk”

decomposition. Contrary to previous approaches [165], our approach is not based on a

heuristic and may support more than one variable in the shared set. Specifically, it always

finds a solution if it exists. As previously shown in Table 3.2, its success rate matches the one

of a SAT implementation.

61

Chapter 3 . Technology Mapping for FPGAs

3.5.1 Technology Mapping Algorithm

We follow the method proposed in [165] for mapping into LUT structures. Specifically, the

LUT mapper performs cut enumeration using cuts up to size l with k < l ≤ 2×k, derives their

functions as truth tables, and checks if the functions are decomposable into a “kk” structure.

If a function is decomposable, the area and delay are assigned based on a given LUT library. If

the function is not decomposable, the cut is ignored. An LUT library specifies the area and

delay of an LUT based on its size. Similarly to Section 3.4.2, the mapper begins by minimizing

delay, followed by several iterations of area recovery. Contrarily to Section 3.4.2, the mapper

uses ACD decomposition of l-feasible cuts during all mapping iterations.

3.5.2 Experimental Results

In this experiment, we perform technology mapping into LUT structures by leveraging non-

routable cascade connections of LUTs in FPGA architectures. We use the same baseline of

Section 3.4.3. Motivated by the high cost of routing, we assume that a 6-LUT and a cascade

of two 6-LUTs both have unit delay. A more precise model would assign propagation delay

of about 1.2 to the signals in the bound set of a LUT cascade and unit delay to the signals

connected to the composition function. However, the mapper in [165] only supports a fixed

delay assignment to all the signals. Hence, we assume the delay of a cascade to be unitary

to not penalize the quality of mapping into LUT structures. We run all the mappers with the

same parameters to perform minimal-delay mapping. Mappers running ACD use cuts up to

10 inputs.

Table 3.8 compares traditional LUT mapping with choices, the LUT structure mapping [165],

and the proposed method described in Section 3.3.5 supporting 1 (1-SS) or multiple (M-SS)

shared set variables. S66 improves the traditional mapper by 30.74% in delay while increasing

area and the number of edges. For many benchmarks, the area increases due to logic duplica-

tion to minimize delay. Notably, J66 1-SS considerably improves all the metrics, compared

to S66. The improvement comes from the better success rate of the decomposition shown in

Table 3.3. Moreover, J66 M-SS achieves further improvement, compared to S66, reducing the

average delay, area, and edge count by 6.22%, 3.82%, and 3.09%, respectively, with a faster run

time. Remarkably, for designs with a similar delay to the traditional mapper, J66 achieves a

large reduction in the number of LUTs and edges. This is because J66 successfully mitigates

structural bias. For instance, for benchmark int2float, J66 M-SS reduces the number of LUTs

by 27%. For the same benchmark, S66 reduces the number of LUTs only by 1.92%. Simi-

lar improvements are also observed for all the benchmarks when performing area-oriented

mapping, instead of delay-oriented mapping. Another interesting benchmark is cavlc, where

multiple shared set variables significantly improve the delay, area, and edge count.

While S66 is generally faster than J66 for large functions, the mapping time of J66 is better

than that of S66. This is because J66 is faster when applied to frequently appearing decom-

posable functions and slower when applied to non-decomposable functions. After all, it uses

62

3.6 Summary

Table 3.8: Comparison of delay-driven LUT mapping and multiple ACD-based mapping into
“66” cascade structures.

Benchmark dch; if -K 6 dch; if -S 66 [165] dch; if -J 66 1-SS dch; if -J 66 M-SS
LUTs Edges Delay Time (s) LUTs Edges Delay Time(s) LUTs Edges Delay Time(s) LUTs Edges Delay Time(s)

adder 363 1433 22 0.18 352 1521 13 0.85 356 1552 13 0.52 354 1550 13 0.83
bar 1664 9344 4 0.44 1664 8320 3 1.34 1664 8320 3 0.75 1664 8320 3 0.78
div 8618 32394 406 6.62 11555 46558 266 34.87 11071 45711 251 27.54 11298 47587 248 30.87
hyp 58393 239097 1864 5.43 65987 274992 1144 270.03 65352 274000 1082 161.75 65175 273434 1076 183.77
log2 9712 43562 58 17.05 12813 59950 42 73.19 12526 58798 40 54.03 12409 59528 39 71.87
max 831 3804 14 0.37 1177 6162 9 1.77 1113 5448 9 1.31 1113 5448 9 1.44
multiplier 7383 34137 36 6.01 8898 42566 25 46.10 8861 42005 25 31.27 8645 43556 24 36.15
sin 1928 8445 30 1.31 2620 12074 22 12.45 2461 11125 21 9.39 2400 10977 21 13.17
sqrt 7515 29573 663 4.17 9510 37809 423 42.21 9109 37396 403 24.86 9441 38373 398 32.31
square 4122 17319 23 1.98 4299 19677 15 11.75 4290 19843 14 8.07 4299 19972 14 12.65
arbiter 1833 8982 6 1.64 2000 9481 4 2.71 1992 9834 4 2.53 1992 9834 4 2.50
cavlc 137 707 4 0.13 125 645 3 0.49 124 639 3 0.43 110 565 2 0.54
ctrl 30 133 2 0.07 28 131 2 0.08 28 133 1 0.09 28 133 1 0.09
dec 287 684 2 0.09 512 2304 1 0.11 512 2304 1 0.12 512 2304 1 0.12
i2c 312 1360 3 0.16 327 1530 2 0.49 319 1478 2 0.41 306 1433 2 0.45
int2float 52 258 3 0.08 51 257 2 0.17 42 216 2 0.17 38 191 2 0.20
mem_ctrl 11037 48812 18 10.24 11666 52725 13 59.20 11247 51109 13 48.04 11019 50726 13 56.43
priority 178 725 6 0.11 175 761 4 0.21 176 768 4 0.28 176 768 4 0.28
router 89 285 4 0.09 65 305 3 0.15 65 306 3 0.19 65 303 3 0.21
voter 1838 8596 13 2.23 2133 10793 10 7.22 2068 10082 10 5.58 2053 10081 10 7.87

Improvement -13.65% -27.62% 30.74% -10.73% -24.52% 34.29% -9.44% -24.00% 35.86%
Total 58.40 565.39 377.33 452.53

more effort to find a solution. For instance, on the benchmark sqrt, which has a considerable

run time difference between S66 and J66, only 2.93% of all cuts are not decomposable by J66,

compared to 11.45% by S66. Moreover, only 10.35% of 10-input cuts are not decomposable by

J66 M-SS, while 39.48% are not decomposable by S66. Run time could be further reduced by

taking advantage of GPU-based LUT mapping implementations [120].

Although not deeply studied in this chapter, our ACD-based LUT mapping approach shows

great potential in area optimization. For example, we optimized the int2float benchmark

the following script from our experiments: dfraig; resyn; resyn2; resyn2rs; if -y
-K 6; resyn2rs;. In one flow, we ran &if -K 6 -a for area-oriented mapping, followed

by mfs and lutpack until saturation for post-mapping area optimization. This resulted in

a network of 47 LUTs. In the other flow, we used only our ACD method for area-oriented

mapping by running &if -J 66 -K 10 -a -z2. This approach resulted in a network of 34

LUTs, marking a substantial reduction in the number of LUTs by 27.6%. Similarly, the first flow

obtains a network of 135 LUTs for benchmark cavlc. Our mapper finds a network with 102

LUTs, achieving a remarkable reduction in number of LUTs by 24.4%. Therefore, the methods

discussed in this chapter have the potential to offer significant area reductions.

3.6 Summary

In this chapter, we proposed two enhancements to Boolean decomposition into LUTs and

performance-driven technology mapping for FPGAs.

First, we presented efficient methods to compute Ashenhurst-Curtis decomposition (ACD).

We provided a theoretical base and practical algorithms to solve its sub-problems, namely

the feasible variable partition, functional encoding, and the shared set maximization. Our

2Option -z decomposes the LUT structures created by J66 into LUTs cascades.

63

Chapter 3 . Technology Mapping for FPGAs

algorithm is truth-table-based and it is the first of its kind for its flexibility in the number of

free set, bound set, and shared set variables, and the number resulting LUTs. We provided

algorithms to optimally solve the decomposition of functions into two LUTs, as well as heuris-

tics for generating two-level or multi-level LUT structures. Our approach outperforms all of

the previous state-of-the-art methods in their ability to derive a decomposition by a large

margin, up to 35.58% with a better run time.

Second, we proposed a LUT mapping algorithm that integrates ACD on-the-fly to improve

performance-driven technology mapping. Experimental results show an impressive 12.39%

delay improvement compared to the state-of-the-art LUT mapper in ABC with choices, with a

surprising area reduction of 2.20%, and with competitive run time. Additionally, we presented

four new best results in the EPFL synthesis competition. These results were obtained without

using design-space exploration (DSE) methods. Hence, we expect even better results by using

LUT mapping with ACD in a DSE tool. Third, we focused on improving the performance of

FPGA by leveraging non-routable connections. We used our formulation of ACD to compute

mappings of Boolean functions into LUT structures composed of two LUTs connected by a non-

routable connection. We integrated this version of ACD in a technology mapper. Compared to

the state of the art, we showed that this method reduces the delay, area, and edge count by

6.22%, 3.82%, and 3.09%, respectively, with better run time. The overall improvement in delay

for the selected benchmarks, compared to not using non-routable connections, is 35.86%.

Additionally, we showed the great potential of these methods in area-oriented mapping.

The findings of this work have impact beyond technology mapping. LUT mappers are key

in design-space exploration engines and in various optimization flows, for example, in those

used for standard cells [153]. Hence, the methods proposed in this chapter may significantly

improve the quality of logic synthesis tools, especially for delay optimization.

64

4 Technology Mapping for Standard
Cells

Chapter 3 was dedicated to studying technology mapping algorithms for field-programmable

gate arrays (FPGAs). In contrast, this chapter explores novel technology mapping methods

designed to improve the quality of results (QoR) of standard-cell-based designs, which include

general-purpose processors and application-specific integrated circuits (ASICs). The focus is

on algorithms that transform a synthesized logic network into an interconnection of standard

cells described by standard-cell libraries. Specifically, these methods include: (i) novel tech-

niques to perform high-quality and scalable matching; (ii) algorithms for technology mapping

using multiple-output cells; and (iii) advanced technology mapping covering algorithms. The

content of this chapter is largely based on the publications in [163, 197, 202].

The remainder of this chapter is organized as follows. First, we present the motivations of

this chapter in Section 4.1 and the relevant background on technology mapping for standard

cells in Section 4.2. Next, Section 4.3, based on the publication in [163], presents a matching

technique called hybrid matching to improve over Boolean matching by supporting large cells

and leveraging structural redundancies. Circuits mapped using hybrid matching typically

show a 6.5% average reduction in area compared to Boolean matching, for similar delay.

Then, Section 4.4, based on the publication in [197], describes methods to support multiple-

output cells during technology mapping. This section addresses the problem by proposing

Boolean matching for multiple-output cells and introducing the first selection and covering

algorithm for multiple-output cells. In the experiments, we compare our mapper against ABC

showing a 7.48% area reduction on average when mapping arithmetic circuits for the minimal

delay. Furthermore, our mapping algorithm reduces the area by 5%, on average, compared

to the mapping method of Yosys in which adder cells are considered as white boxes during

technology mapping. Next, Section 4.5 studies technology mapping covering algorithms,

which are used to select a subset of cells that cover a logic network while minimizing cost

metrics and/or meeting target constraints. The experimental results show that the proposed

mapping heuristics can improve area by 4.66%, on average, compared to other mappers in

ABC when mapping for best delay. Following this, Section 4.6 presents emap: a technology

mapper that incorporates the algorithms discussed in this chapter. This section includes

65

Chapter 4 . Technology Mapping for Standard Cells

several experiments with multiple technology libraries and benchmarks. Moreover, we show

results after buffering and gate sizing. In the experimental results, we show that emap achieves

better average area and run time than the mappers in ABC. Finally, Section 4.7 concludes and

summarizes this chapter, highlighting the key findings and contributions.

4.1 Motivation

CMOS is the most advanced technology for integrated circuits offering unparalleled perfor-

mance, power consumption, area, and reliability. Despite the physical scaling limitations

and the gradual slowdown of Moore’s Law, CMOS-based chips still maintain a significant lead

over emerging technologies in terms of scalability, cost-effectiveness, and maturity of the

manufacturing process. Moreover, ongoing research and development efforts continue to

push the boundaries of CMOS technology to its limit, ensuring its continued relevance and

superiority.

Technology mapping is one of the fundamental steps in the realization of integrated

circuits. It consists of translating a technology-independent representation of digital hardware

into a connection of technology-specific components. Standard-cell-based design utilize a

semi-custom design methodology based on standard cells. Standard cells are pre-designed,

pre-characterized blocks of transistors configured to perform specific logic functions and

serve as the fundamental building blocks for creating complex integrated circuits. This chapter

focuses on technology mapping algorithms for standard cells-based design, which translate a

technology-independent representation of digital hardware, modeled as a multi-level logic

networks, into a network of standard cells.

The problem of optimally mapping Boolean functions to a cell library is known to be

intractable. Therefore, technology mapping is generally formulated as a series of local substi-

tutions applied to a simple multi-level representation of logic called the subject graph. The

goal of technology-independent logic synthesis is to create a compact subject graph in terms

of size and depth to facilitate high-quality technology mapping, as a compact subject graph

correlates with a high-quality mapped circuit. This chapter discusses the typical challenges

of technology mapping, such as delay minimization and area minimization (possibly under

delay constraints). Given the complexity of the technology mapping problem, numerous

heuristics and solutions have been proposed in the literature [37, 38, 65, 79, 84, 87, 90, 98, 114,

123, 146, 186]. This chapter revisits technology mapping for standard cells, introducing new

heuristics and methods to enhance the quality of results.

In addition to addressing the technology mapping problem itself, the increasing physical

scaling limitations of transistors have led to the evolution of standard cell libraries to be more

comprehensive. For example, libraries at the 7nm technology node include cells capable of

realizing more complex functionalities compared to older nodes, such as large AND-OR cells

with up to 9 inputs. Moreover, libraries include multiple-output cells, such as half adders

and full adders, which are often neglected by technology mappers. Consequently, technology

66

4.1 Motivation

mapping needs to evolve to better leverage these advanced libraries.

This chapter has three main research contributions. First, motivated by technology li-

braries with large cells, we propose hybrid matching as a new method to solve the matching

problem during technology mapping. The main advantage of hybrid matching is its ability to

support large-input cells and its scalability. This method overcomes the quality limitations

of pattern matching and the cell-size limitations of Boolean matching. Second, we present

algorithms to increase the support of multiple-output cells in technology mapping, addressing

the following problems: (i) multiple-output cell detection; (ii) Boolean matching for multiple-

output cells; and (iii) cell selection and covering algorithms with multiple-output cell support.

Third and last, we revisit heuristic algorithms for technology mapping to achieve better area

under delay constraints. Specifically, we analyze methods for cell selection (covering) and

inverter insertion.

Based on these contributions, we developed emap: a technology mapper for standard

cells that includes the algorithms discussed in this chapter. The mapper is available in the

open-source logic synthesis library Mockturtle1 [183].

We experimentally evaluate the proposed methods by comparing the results with state-

of-the-art technology mappers. A summary of the experimental results with the ASAP 7nm

standard cell library [44] is as follows:

• We show that hybrid matching reduces the area under delay constraints up to 39% and

by 6.5% on average compared to Boolean matching. Additionally, hybrid matching

reduces the run time of technology mapping by 25%, on average, compared to Boolean

matching.

• We show that multiple-output technology mapping with half adders and full adders

achieves a 7.48% area reduction on average when mapping for minimal delay in arith-

metic circuits. Additionally, we show that our method reduces the area by 5% on average

compared to considering adder cells as white boxes during technology mapping.

• We show that the proposed cell selection methods reduce the average area by 4.66%

when mapping for best delay compared to ABC.

• We evaluate emap against the state-of-the-art mappers in ABC before and after buffering

and gate sizing. When mapping for best delay, we show that emap achieves 9.16% better

area and 2.95% better delay after technology mapping, and 9.22% better area and 2.59%

better delay after buffering and gate sizing.

1Available at: https://github.com/lsils/mockturtle

67

https://github.com/lsils/mockturtle

Chapter 4 . Technology Mapping for Standard Cells

4.2 Preliminaries

In this chapter, we research algorithms to solve the technology mapping problem for com-

binational logic networks. While digital circuits are inherently sequential, the choice of

implementation of registers, I/O circuits and drives is often accomplished through direct

replacement. Sequential circuits can be transformed into combinational ones by treating

register and box outputs as additional inputs of the network and register and box inputs as

additional outputs of the network.

Minimum-cost technology mapping, defined in general terms as finding a set of cells

realizing a circuit specification while minimizing cost, is an intractable problem. It is a form of

minimum-cost satisfiability, whose exact solution has time complexity higher than polynomial,

as for exact synthesis [152]. Hence, this problem is approached as series of local substitutions

applied to a multi-level logic network implementing the specifications called the subject graph.

The key objective of technology-independent logic synthesis is to achieve a compact subject

graph, both in terms of size and depth, to facilitate technology mapping and enhance quality.

This approach is often referred to as structural [90].

This idea assumes that a good structure for a Boolean network, achieved through technology-

independent synthesis, correlates with good QoR after technology mapping. While this as-

sumption generally holds true for technology mapping using standard cells, it introduces

a bias, known as structural bias. This bias occurs because the network after technology

mapping is structurally similar to the subject graph, limiting the exploration of alternative

configurations that might offer better quality.

Standard cell libraries define a set of pre-designed and pre-characterized logic primitives

that are used as building blocks to create digital circuits. Technology mapping uses these

blocks to cover the subject graph while minimizing a cost function, typically based on power,

delay, and area. Mapping addresses two sub-problems: matching and covering (also known as

selection). Matching involves associating sections of the subject graph with a list of cells that

are functionally equivalent and capable of implementing those sections. Covering chooses a

set of cells to cover the graph such that the target cost function is minimized.

In the following sub-sections, we further present the terminology and the state-of-the art

methods for estimating delay and solving the matching and selection problems.

4.2.1 Delay Models in Technology Mapping

Accurate cost estimations are crucial in technology mapping. However, costs such as delay

and switching power depend on factors such as the load of the cells and the input transition

time, which remain unknown until a mapping solution is extracted. Moreover, interconnects

also play an important role. Hence, correctly estimating the delay and identifying optimal

matching is challenging. Additionally, standard cell libraries define multiple discrete sizes for

68

4.2 Preliminaries

each cell, based on the load they can sustain. For a cell n, increasing the size enables driving

additional load while maintaining similar delay, but also increases the load on the cells in n’s

fan-in. In this section, we focus on delay models, but the considerations apply for switching

power.

Standard cell libraries typically use the non-linear delay model (NLDM), which accurately

describes the response of cells depending on their operative environment. The NLDM format

provides look-up tables that describe the delay response of cells based on input transition

time (slew) and output load. The delay response is characterized by the transition time and

the propagation time components, which typically depend on the input values. Standard

cell libraries are often described in liberty format. While essential for accurate static timing

analysis, the NLDM’s complexity makes it impractical for direct use in the technology mapping

process. Thus, various approximations to the delay model have been adopted. In this section,

we present the most used models for technology mapping: the constant and linear delay

models.

Constant delay model

A constant delay model assumes that the delay of a cell is independent of its load and the

input transition time. The benefits of this method are its simplicity and the computational

efficiency, which enable the use of more advanced match selection algorithms. Moreover, this

delay model can be used as an initial estimation of the delay of a network. Predictably, the

drawbacks of this method is its inaccuracy, since the delay can strongly vary based on the

load and transition time. Typically, mapping based on the constant delay model uses only

cells with smaller sizes. Subsequently, the delay is more accurately computed and minimized

during the buffering and gate sizing phase.

Given a standard cell library in NLDM format, extracting load-independent propagation

delay is not straightforward. Modern methods are based on the concept of logical effort [188]

to model the load-independent delay of a cell:

d = e · g +p. (4.1)

The effort delay depends on the load (e · g) and properties of the cell driving the load (p).

In Equation 4.1, p is the load-independent parasitic delay, caused primarily by the parasitic

capacitance of the cell, e is the logical effort, which depends on the cell’s topology and is

independent of the load capacity, and g is the electrical effort, or gain, which describes how

the electrical environment affects the performance of the cell. The gain g is described by:

g = Cout

Ci n
, (4.2)

where Cout is the load at the output terminal of the cell, and Ci n is the load at the input

terminals of the cell.

69

Chapter 4 . Technology Mapping for Standard Cells

From this model, it can be seen that the delay is independent of the load as long as the

gain g is known. Moreover, logical effort states that optimal delay is achieved when the effort

delay (e · g) is balanced for all the stages on the critical paths. Since e varies depending on the

type of cell, g is the parameter to tune. The greater the logical effort, the smaller the load a cell

can drive while maintaining the same effort delay. Additionally, more realistic delay models

also include the transition delay (slew rate) [179].

If the standard cells are continuously sizeable, it is possible to find a cell such that the

gain is balanced, meeting the target delay. Hence, a quite accurate constant delay model

is achieved. However, cell libraries contain a limited number of sizes. Consequently, a cell

might not be able to satisfy the load requirement to maintain constant delay. Nevertheless,

a range of loads for which the constant delay model holds can be determined. A method to

characterize the constant delay model given a cell library of discrete sizes is proposed in [79].

This approach requires to fix a target slew rate τ over the critical path to extract the delay model

of Equation 4.1 and a global gain G to determine the target gain at each stage. Parameter τ can

be estimated as the average slew of an inverter. Parameter G is related to the inverter in the

library. Parameters e and p in Equation 4.1 are computed for each pin of the cells via linear

regression over the NLDM delay values. Then, the method computes a gain-based cell for

each functionality group (i.e., it groups multiple cell sizes) such that the constant delay model

holds. We refer the reader to [79] for further details of the methodology.

Technology mappers using a delay model based on logical effort are often referred to as

gain-based [79, 87, 186]. Gain-based mappers have been shown to be as accurate as more

sophisticated mappers using load-based delay models in many cases and, currently, are the

most common [21, 38, 79, 146]. Additionally, gate sizing is separated from technology mapping,

as the mapping process only involves gain-based cells.

Linear delay model

A linear delay model estimates the delay of a cell as follows:

d = c · l +p, (4.3)

where p is the load-independent propagation delay, c is a (slope) constant, and l is the load of

the gate. While the format resembles Equation 4.1, the equation describes a different relation.

Constant c represents the delay induced by units of load driven by the cell. Values for c and p

are computed and assigned to each input pin of a cell. Contrarily to the gain-based method,

technology mappers using the linear delay model perform gate sizing during mapping. Often

this model is further approximated. The load l is replaced by the fan-out number and c

becomes the delay contribution of each fan-out. This model is referred to as nominal delay

model. The nominal delay model is simpler since it does not compute an accurate load.

The technology mapper in SIS [178] adopts this latter model. A common library format that

70

4.2 Preliminaries

describes cells using linear or nominal delay model is the genlib format2.

Key points

The mapping algorithms in this thesis adopt a constant delay model. We argue that the

constant delay model is a good choice considering that technology mapping is performed

before buffering, sizing, placement, and routing, stages where more realistic delay estimations

are available. Consequently, the delays computed by more complex models would still be

large approximations at this stage. Additionally, the constant delay model simplifies tech-

nology mapping algorithms, making them more efficient and capable of exploring a broader

solution space. More precise delay models, such as those accounting for interconnect de-

lays [56, 67], can be considered during technology-dependent logic synthesis and incremental

remapping [22]. Alternatively, the constant delay model can be refined through multiple

delay-oriented mapping iterations to enhance accuracy and better reflect the effort required

by the critical path. Despite this, the algorithms proposed in this thesis can be extended to

accommodate different delay models.

4.2.2 Related Works

Algorithms for technology mapping where pioneered by Keutzer [90], who addressed both

the matching and the selection problem. In his approach, the subject graph is partitioned

into trees and matches are extracted for each tree using pattern matching. Keutzer proposed

an efficient algorithm based on dynamic programming to combine matching and covering.

He showed that minimum-area and minimum-delay mapping is solvable in linear time for

trees when using a constant delay model. For instance, the area of a tree can be optimally

computed as follows. The nodes in a tree are processed in topological order, from the inputs

to the output. The area contribution of match at a node is computed as the the area of the

corresponding cell plus the area contribution of the best matches at the leaves of the match.

The best match at a node is the match minimizing the area contribution. By induction, the set

of matches reachable from the output of the tree represent an area-optimal mapping.

The optimality results in [90] are weakened by the nature of logic networks being directed

acyclic graphs (DAGs). Consequently, optimality on the entire subject graph is not guaran-

teed. Moreover, optimality is assured only if the pin-to-pin rise and fall delays are identical;

otherwise the problem becomes NP-hard [150].

Rudell [172] proposed an extension over Keutzer’s work with a linear-time algorithm

to optimally solve the tree mapping problem under a linear delay model. He realized that

standard cell libraries have a fixed and small set of sizes. Consequently, he proposed to store for

each node multiple best matches for each possible capacitive load. If enough matches are used

to cover all the possible loads, the algorithm returns an optimal solution. An improvement

2The genlib format is also used for libraries following the constant delay model by setting c to zero.

71

Chapter 4 . Technology Mapping for Standard Cells

over this work consisted of using a piece-wise linear curve to model the optimal arrival times

as a function of the load, where each line represents a different cell [206]. Additionally, the

mapper in MIS [53] extended pattern matching to DAGs, eliminating the initial partitioning of

the subject graph into trees.

While previous mappers relied on pattern matching techniques, Mailhot [123] expanded

on Keutzer’s work by introducing Boolean matching based on Shannon decomposition. This

approach addressed the challenges of pattern matching for logic functions with multiple

occurrences of the same variable, such as XORs or majority functions. Furthermore, Boolean

matching could potentially leverage don’t care conditions to optimize the circuit for size or

speed.

Up to this point, optimal algorithms for technology mapping had been presented only for

trees. The first work to propose an optimal algorithm mapping for DAGs was FlowMap [45].

With FlowMap, Cong and Ding demonstrated that there is a polynomial time algorithm to

solve the delay-optimal match selection problem under the unit delay model. The algorithm is

based on network flow computations. This algorithm maintains the optimality property under

static net delay models for FPGAs [48], which can be seen as a special case of the constant

delay model. Kukimoto et al. used the FlowMap idea in standard cell technology mapping,

showing that the optimality holds under a constant delay model [98]. When considering

load-dependent delay models, the delay-optimal mapping is an intractable problem.

Regarding area optimality on DAGs, Levin and Pinter [117], and Farrahi and Sarrafzadeh

[59] proved that it is an NP-complete problem by showing that a 3-SAT problem can be

transformed into a k-LUT minimization problem. Furthermore, they show that the problem is

still NP-complete for single-output networks and circuits with bounded fan-ins and fan-outs.

While their proof is for FPGA mapping, the same argument holds for standard cell mapping.

Due to the intractability of area-optimum mapping, many heuristics have been proposed

for FPGA mapping [40, 124], which were later extended for standard cell mapping [38]. These

heuristics aim to provide practical solutions to the mapping problem by balancing the trade-

offs between computational complexity and the quality of the resulting mappings.

All these works focus on technology mapping for single-output cells. In Section 4.4, we

propose algorithms to extend the technology problem to multiple-output cells.

4.2.3 Covering

The covering problem, often referred as match selection or simply as selection, chooses a

set of the matches to cover the subject graph and produce a mapped network minimizing

a cost function or satisfying the given constraints. Selection is generally divided into two

sub-problems: match evaluation and cover extraction.

Match evaluation is responsible for selecting the best matches rooted in a node based on

72

4.2 Preliminaries

specific cost functions, such as delay and area. Typically, the match evaluation is conducted in

topological order, from the primary inputs to the primary outputs, so that the cost of a match

includes the cost of the best matches at its inputs. This enables a correct propagation of delays

and area estimations.

After match evaluation, cover extraction computes a mapped network by selecting the

best matches reachable from the primary outputs of the network. For each primary output

(PO), the algorithm adds the best match to the cover. Then, recursively, each match at the

leaves (inputs) of matches in the cover is also included in the cover until the primary inputs

are reached.

In the remainder of this section, we present the state-of-the-art methods addressing the

selection problem to minimize delay and area.

Covering for delay

Under the constant delay model, it is possible to extract a delay-optimal mapping with respect

to the subject graph using the algorithm from [45, 98]. The approach for standard cells can

be formulated as follows. The algorithm proceeds in topological order. Let M(n) be a set of

matches rooted in a node n of the subject graph. We then define the delay of a match to be

Dm and the best delay of a node n to be D(n). The delay Dm can be computed as:

Dm = max
l∈leaves(m)

(D(l)+pm(l)), (4.4)

where pm(l) represent the propagation delay of m from the input pin connected to l to the

output pin of the match. Consequently, the best delay at a node can be computed as follows:

D(n) = min
m∈M(n)

Dm . (4.5)

In [98], all the matches at a node are computed using a pattern matching algorithm for DAGs.

The complexity of the delay-optimal mapping algorithm is O (p ·N), where N is the number

of nodes in the network and p is the total number of nodes in all pattern graphs. Given

that modern cell libraries contain a large number of cells, and thus patterns, p can be quite

large number. Consequently, state-of-the-art standard cell mappers generally sacrifice delay

optimality for improved runtime by selecting a limited number of matches (or cuts) at each

node using cut prioritization algorithms [47, 141]. This approach also facilitates scalable usage

of Boolean matching.

Covering for area

Due to the NP-completeness of the optimal-area mapping problem, area-oriented covering is

approached similarly to delay-oriented covering using heuristics. In this section, we review

the two most important heuristics, namely, area flow and exact area.

73

Chapter 4 . Technology Mapping for Standard Cells

The area flow [124], or effective area [40], of a match m rooted in node n is computed as

follows:

AFm = am + ∑
l∈leaves(m)

AF (l)

f (l)
, (4.6)

where AFm is the area flow of match m, am is the area of m, leaves l are the input nodes of the

match, AF (l) is the area flow of the best match at node l , and f (l) is the fan-out number of

node l , which describes the fan-out of matches rooted in l . For primary inputs or constants,

the area flow is considered to be zero. The area flow uniformly distributes the area contribution

at l over the fan-out nodes of l . This has the benefit of accounting for the multiple fan-outs

during the estimation of the area in the TFI cone of m. Similarly to delay covering, area flow

covering selects in topological order the match minimizing area flow at the node:

AF (n) = min
m∈M(n)

AFm . (4.7)

For an efficient computation in technology mappers, area flow at a node is often expressed as:

AF ′
m = AFm

f (m)
= am +∑

l∈leaves(m) AF ′(l)

f (m)
. (4.8)

In this chapter, we use this latter formulation.

If accurate fan-out numbers f (l) are known, the sum of the area flow over the POs of a

network results in the area of its cover. However, during covering the actual fan-out numbers

are not known and have to be estimated. Specifically, fan-out references are available only

after the cover extraction phase while area flow is used in the match selection flow (the cells in

the cover are extracted using a reachability analysis from the POs; during match selection the

cells in the cover are not known). The approaches in [38, 140] initially estimate the fan-out

reference of a node to be the one of the subject graph. In this way, matches at nodes with

higher fan-out are more likely to be selected since they better distribute the area flow to the

fan-out. If area flow covering is performed for multiple iterations, to incrementally improve

the cover, fan-out references are updated as follows. If a node is in the cover, its fan-out

reference number matches the one in the cover. Otherwise, its fan-out reference number is

assumed to be one. However, this approach is often too aggressive and quickly leads to a

local minima. A better approach generates references using a linear combination between the

previous estimations and the current cover [30, 201]. At round j :

f (n) j = max(α× f (n) j−1 + (1−α)× r e f (n),1), (4.9)

where f (n) j are the estimations at round j , f (n) j−1 are the estimations at the previous round

j −1, r e f (f) are the actual references in the cover, and α ∈ [0,1] is parameter. Parameter α can

be considered as a temperature controlling the convergence rate to the reference value of the

cover and is computed experimentally. While having a dependency on the circuit structure,

74

4.3 Hybrid Matching

Algorithm 4.1: Recursive dereferencing and referencing for exact area
Input: node n, match m
Output: exact area

1 Algorithm dereference(n, m)
2 ar ea ← am

3 foreach node l ∈ leaves(m) do
4 f (l) ← f (l)−1
5 if f (l) = 0 then
6 ar ea ← ar ea + dereference(l , best_match(l))

7 return ar ea

8 Algorithm reference(n, m)
9 ar ea ← am

10 foreach node l ∈ leaves(m) do
11 if f (l) = 0 then
12 ar ea ← ar ea + reference(l , best_match(l))

13 f (l) ← f (l)+1

14 return ar ea

we empirically find that for a convergence within 2 or 3 rounds of area flow:

α j = 1

(j +1)2 , (4.10)

is a good metric. Parameter α starts to be used from the second mapping round when j = 1.

In the following rounds, α is decreased to converge to a solution.

Another powerful method for minimizing area is exact area [38, 140]. Similarly to local

search in set covering problems, exact area aims at iteratively improving an existing cover by

first removing a match from it, together with its dependencies in the MFFC, and then adding

an alternative match that has lower area than the removed one. Algorithm 4.1 shows the two

methods, dereference and reference, to remove a match from the cover and add a match to

the cover, respectively, while computing the local change in the area. The fan-out number

f (l) for a node l counts the fan-out of the best match at l in the cover. Note that methods in

Algorithm 4.1 are recursive, since the dependencies in the MFFC are considered.

4.3 Hybrid Matching

This section contains the first technical contribution of this chapter and focuses on the match-

ing problem. In early approaches, cells were represented using a graph, typically in the form

of a NAND decomposition of the Boolean function. The matching task was then formulated as

a (sub)graph isomorphism problem, particularly efficient when the decomposition graph is a

tree. This form of matching is referred to as pattern matching [90]. However, this approach has

several drawbacks. The most important one is that the graph decomposition is not canonical.

75

Chapter 4 . Technology Mapping for Standard Cells

Consequently, the number of possible graph decompositions can grow exponentially large

for some cells, making it challenging to detect potential matches. Moreover, the matching

process is significantly more complex when the decomposition graph is not a tree, such as in

the case of XOR cells or majority cells. Later approaches used Boolean matching [123], which

is based on a canonical Boolean representation of the function, to mitigate the limitations of

pattern matching. Boolean matching inherently solves a tautology problem. Typically, this

technique scales to cells up to 6 inputs, covering the majority of the cells present in standard

cell libraries. Modern approaches use truth tables or BDDs as a canonical data structure.

In this section, we propose hybrid matching for technology mapping: an approach that

combines the strengths of pattern and Boolean matching to achieve better quality. On the

one hand, pattern matching finds application for many cells that are decomposable into

NAND trees, such as AND-ORs. Furthermore, modern cell libraries contain cells of 7 or more

inputs, beyond Boolean matching capabilities (for a reasonable run time). On the other hand,

Boolean matching generally offers better quality for cells up to 6 inputs. By leveraging the

benefits of both techniques, hybrid matching computes both pattern and Boolean matches

and strategically combines them to achieve better quality and run time speedup.

We have integrated hybrid matching in the technology mapper emap in the logic synthesis

library Mockturtle [183]. Although we work with a gain-based delay model, the methods

discussed in this section are compatible with physical-aware mappers since they are related

to matching and not to covering. In the experiments, we compare hybrid matching to both

Boolean and pattern matching showing that:

• Hybrid matching reduces the area up to 39% compared to Boolean matching, making

efficient use of large gates. On average, it reduces the area by 6.5% while maintaining a

competitive worst-case delay.

• Hybrid matching reduces the area by 4.6%, on average, compared to pattern matching

for better delay.

• Hybrid matching reduces the run time of technology mapping by 25% compared to

Boolean matching.

• Hybrid matching achieves comparable average delay performance to Boolean matching.

The remainder of this section is organized as follows. We first present the background on

Boolean decomposition, used to automatically generate decomposition patterns for standard

cells in Subsection 4.3.1. Then, we describe our methodology for Boolean matching and

pattern matching in Subsection 4.3.2. Next, we present hybrid matching in Subsection 4.3.2.

Finally, Subsection 4.3.4 presents the experimental results.

76

4.3 Hybrid Matching

4.3.1 Preliminaries

In the preliminaries, we introduce the disjoint-support decomposition (DSD) as an efficient

method to derive a decomposition graph of a Boolean function. In hybrid matching, we use

DSD to derive decomposition patterns for each library cell.

The DSD is a special case of Boolean decomposition. A function f has is disjoint-support

decomposable if it can be decomposed so that:

f (⃗x) = h (⃗x1, g (⃗x2)), with x⃗1 ∪ x⃗2 = x⃗ and x⃗1 ∩ x⃗2 =;. (4.11)

A Boolean function is called full-DSD if function g is recursively decomposable with disjoint

support. Two efficient procedures can be used to find DSD decompositions using 2-input

operators, namely top-down decomposition [25] and bottom-up decomposition [36].

Top-down decomposition finds a decomposition using a 2-input operator ⊙ applied to a

support variable xi and a remainder function g :

f (⃗x) = xi ⊙ g (⃗x \ {xi }), xi ∈ x⃗. (4.12)

Bottom-up decomposition finds two variables xi and x j that uniquely influence f through

a 2-input operator:

f (⃗x) = h(xi ⊙x j , g (⃗x \ {xi , x j })), xi , x j ∈ x⃗. (4.13)

Example 4.3.1. The function f = ((a∨b)∧ (c ∨d))∧e is top-down decomposable for variable e

and it is bottom-up decomposable for variables (a,b) and (c,d). ▲

4.3.2 Boolean and Pattern Matching

In this section, we present our methodology for Boolean and pattern matching. These two

techniques are then combined to obtain a hybrid mapper (in Subsection 4.3.3). Throughout

this section, we utilize the term Boolean mapping to denote a mapping algorithm based on

Boolean matching and the term structural mapping for a mapping procedure based on pattern

matching.

Boolean matching

In technology mapping, delay, power, and area can be minimized by exploiting different config-

urations of cells based on the N P N -equivalence classes [23, 202]. Specifically, permutations

increase the number of matches and negations play a crucial role in the insertion of inverters.

Boolean matching relates a canonical representation of a Boolean function to a list of cells that

can implement it and is typically defined over N P (N)-equivalence. In a Boolean mapper,

Boolean matching is performed during the cut enumeration phase of mapping where a set of

cells are associated to a cut given its function.

77

Chapter 4 . Technology Mapping for Standard Cells

In line with previous work [202], we define a data structure that facilitates Boolean match-

ing, called Boolean matching library. Such a library is a hash table that relates the functionality,

represented as a truth table, to a set of cells that can implement it. For each cell, the library pre-

computes all its N P −configurations. Given a function f of a cell, its N P −configurations

are all the input permutations and inversions applicable to f that generate functions in

the N P −equivalence class of f . Specifically, given a Boolean function to match, the li-

brary returns a set of cells in the N P −equivalence class of the function along with their

N P −configurations.

Pattern matching

Pattern matching associates a set of cells to a (sub)graph by solving a graph isomorphism

problem. A database contains a family of patterns for each cell. In modern technology

mapping, a pattern is an AIG representation of a cell’s function. A cell can be associated

with a sub-graph in the subject graph if one of its patterns matches the sub-graph, i.e., it is

structurally equivalent.

In technology mapping, sub-graphs to match are described by cuts and extracted using

cut enumeration. When cell’s patterns are only trees, pattern matching integrates readily with

cut enumeration since the pattern identification algorithm is based on dynamic programming.

Specifically, patterns at a 2-input node n can be identified during the cut merging operation by

linking two input cut patterns using the top operation of node n. This operation is efficient if

the support of the two cuts is considered as disjoint. Considering non-disjoint supports would

require generating many complex patterns and checking for reconvergences during the cut

merging operation, significantly increasing the computational complexity of pattern matching.

This latter complication is not addressed by our work, as Boolean matching compensates for

these scenarios.

To enable pattern matching, we first present a method to derive the pattern database.

Then, we show how to identify patterns during cut enumeration using pattern indexing.

Structural patterns derivation

In this work, we define patterns of a cell, called structural patterns, as and-inverter trees

representing the disjoint support decompositions of the cell’s function. We restrict patterns

to include only tree-like structures because this significantly enhances the efficiency of the

matching procedure. Moreover, most of the cells in technology libraries are full-DSD, such

as multiple-input ANDs and AND-OR gates. A few exceptions include gates whose functions

are not full-DSD, such as XORs, MUXs, and majority gates. For these gates, it is impossible

to produce a structural pattern since the decomposition inevitably results in a DAG struc-

ture. However, non-full-DSD functions can be specifically identified in the subject graph via

structural analysis before mapping, a feature not included in our implementation since it is

78

4.3 Hybrid Matching

a b c d

r

∧

∧

∧

(a) Initial pattern.

a b c d

∧

∧

∧

(b) Balanced pattern.

a b c d

∧

∧

∧

(c) Other redundant pattern.

Figure 4.1: Possible structural patterns for AND4.

addressed by Boolean matching.

Initially, one structural pattern is derived for each full-DSD cell by recursively applying

top-down decomposition and bottom-up decomposition for the AND operator, with possible

input and output negations. A key observation is that decomposition trees are not canonical,

meaning that the same function can be represented by different structural patterns.

Example 4.3.2. A 4-input AND gate can be expressed as (a ∧ (b ∧ (c ∧d))), ((a ∧b)∧ (c ∧d)), or

(((a ∧b)∧ c)∧d) resulting in the three structural patterns depicted in Figure 4.1. ▲

Since matching is performed by comparing derived patterns with sub-graphs extracted

from the subject graph, generating multiple patterns for each cells is crucial as it translates

into additional match opportunities. Therefore, we employ an algorithm to derive additional

patterns from the initial one obtained using DSD. The algorithm generates new structural

patterns by applying 3-input associative transformations to the initial pattern. An associative

move is a tree rotation applied to 2 neighboring nodes that exhibit the associative property.

Algorithm 4.2 outlines the steps to derive multiple patterns. The algorithm recursively applies

associative moves to every node of each computed structural pattern and terminates when no

new patterns are generated.

Example 4.3.3. Suppose that the pattern in Figure 4.1a is the one initially generated by the

decomposition. Pattern in Figure 4.1b can be obtained from the first one by applying a left

rotation to node r . ▲

In order to minimize the number of derived structural patterns, hence limiting the run

time for pattern matching, the algorithm filters structural patterns that are symmetric to

79

Chapter 4 . Technology Mapping for Standard Cells

Algorithm 4.2: Pattern Derivation
Input: Pattern og _pat , Node st ar t_node, Pattern_set set_pat

1 Algorithm derive(og _pat , st ar t_node, set_pat)
2 if is_pi(st ar t_node) then
3 return

4 l ← left_fan-in(st ar t_node)
5 r ← right_fan-in(st ar t_node)
6 if not_negated(l) AND not_pi(l) then
7 r _pat ← right_move(og _pat , st ar t_node)
8 if check_symm(r _pat , set_pat) then
9 add_pattern(r _pat , set_pat)

10 derive(r _pat , st ar t_node, set_pat)

11 if not_negated(r) AND not_pi(r) then
12 l _pat ← left_move(og _pat , st ar t_node)
13 if check_symm(l _pat , set_pat) then
14 add_pattern(l _pat , set_pat)
15 derive(l _pat , st ar t_node, set_pat)

16 derive(og _pat , l , set_pat)
17 derive(og _pat , r , set_pat)

others already found by canonicalizing the order of PIs and AND’s inputs. Thus, in Figure 4.1,

the pattern of Figure 4.1c would not be produced as it is symmetric to the one of Figure 4.1a

(under input permutation).

Pattern indexing and pattern table generation

To identify isomorphic patterns, each node in the structural patterns is assigned to an index.

This index serves as a unique identifier for sub-patterns. In practice, if two pattern roots have

the same index, it indicates that the patterns are isomorphic.

Patterns are processed in ascending order of size. The procedure indexes nodes of a

pattern in topological order. Specifically, each PI is assigned to an index of 1. To other nodes,

the index is uniquely assigned based on the input indexes and polarities (structural hashing).

The order of the inputs is canonicalized for permutation to remove symmetries (e.g., an AND

between 1 and 2 is equivalent to an AND between 2 and 1). This procedure neglects the

presence of negations and permutations at the PIs and the PO of a pattern. Hence, isomorphic

structures in an N P N -equivalence class share the same root index. For the rest on internal

connections, a negative polarity edge in the graph negates the index of the substructure.

Example 4.3.4. To illustrate the indexing procedure, let us consider the simple cell library shown

in Figure 4.2, composed of 2-input AND (AND2), 2-input OR (OR2), 4-input AND (AND4), and

4-input AND-OR-Inverted (AOI22) cells. The first pattern to be indexed is the one associated with

the AND2 cell. The index 2 is assigned to its only node. Afterward, index 2 is also assigned to the

pattern corresponding to the OR2 cell since the same structure has already been observed (the

80

4.3 Hybrid Matching

1 1

2
∧

(a) Indexing of AND2

1 1

2
∧

(b) Indexing of OR2

1 1 1 1

2

4

3

∧

∧

∧

(c) Indexing of AND4

1 1 1 1

22

5

∧

∧

∧

(d) Indexing of AND4

1 1 1 1

22

6

∧

∧

∧

(e) Indexing of AOI22

Figure 4.2: Indexing of patterns.

input and output negations are ignored). Next, the pattern in Figure 4.2c is processed assigning

new indexes for AND3 (index 3) and AND4 (index 4). Then, in Figure 4.2d another pattern of

the AND4 cell is elaborated leading to index 5. Finally, in Figure 4.2e the pattern for the AOI22

is indexed. Unlike the pattern in Figure 4.2d, the AOI22 pattern features a top AND gate with

negated input edges, resulting in a different index. ▲

This procedure naturally exposes the relationship between structures and sub-structures.

For instance, from the previous example, we can conclude that an AND4 can be described

as the AND between two AND2s or a PI and an AND3. From this information, we generate a

hash table that expresses for each structure and substructure how they can be obtained by

ANDing smaller substructures. Such a table is called pattern table. An (i , j) entry in the table

identifies the index of a pattern having pattern i and j (with i ≥ j for canonicity) connected

to an AND at the top. The indexes i and j can be negative, representing a connection with

negated polarity such that, for instance, function a ∧ (b ∨ c) is recognised as different from

a ∧ (b ∧c) even if b ∨c and (b ∧c) have the same pattern index. Thus, each entry depends on

the index and polarity of the left node, and index and polarity of the right one, except for PIs.

Additionally, we generate another hash table, named the index table, which relates the pattern

indexes representing structural patterns to corresponding cells. Tables 4.1a and 4.1b show the

pattern table and index table for the patterns shown in Figure 4.2.

81

Chapter 4 . Technology Mapping for Standard Cells

Indexes -2 1 2 3 4 5 6
-2 6 - - - - - -
1 - 2 3 4 - - -
2 - 3 5 - - - -
3 - 4 - - - - -
4 - - - - - - -
5 - - - - - - -
6 - - - - - - -

(a) Pattern Table

Indexes Gates
2 AND2; OR2
4 AND4
5 AND4
6 AOI22

(b) Index Table

Table 4.1: Pattern and Index Table

Pattern matching in cut enumeration

During cut enumeration, each cut is assigned to a pattern index that identifies the underlying

pattern covered by the cut. Differently from Boolean matching, this operation does not require

computing the function of the cut. Instead, the pattern index is computed during the cut

merging using the pattern table. Specifically, the pattern index of a cut c , obtained by merging

two cuts u and v , is assigned by looking in the pattern table for an entry with the pattern of

u and pattern v as fan-ins along with the polarity of the connection. Initially, a trivial cut is

associated with the pattern index 1. Then, cuts are computed in topological order and patterns

are assigned.

Given a cut and its associated pattern index, pattern matching retrieves the set of cells

using the index table. Since the cells are in the N P N −equivalence class, correct permutation,

and negations are applied during mapping.

4.3.3 Mapping with Hybrid Matching

In this subsection, we present our main contribution: hybrid matching, a matching algorithm

that combines the Boolean and pattern matching techniques presented in Section 4.3.2,

addressing the shortcomings of both strategies and achieving better quality-of-results. We

first summarize the advantages and disadvantages of Boolean and pattern matching to then

present the algorithm for hybrid matching.

Boolean vs. structural

Boolean matching typically yields results of superior quality compared to pattern matching for

a few reasons. First, Boolean matching is not restricted to full-DSD functions. Second, Boolean

matching inherently removes structural redundancies present in the subject graph. However,

Boolean matching is also typically slower because it requires computing the Boolean function

and matching in the N P −equivalence class. Boolean matching in N P −equivalence is

typically addressed by enumerating all the N P −configurations of the cells as explained in

82

4.3 Hybrid Matching

a b c c b d

p

r

q

t

s

∧

∧

∧

∧

∧

Figure 4.3: Subject graph with functional redundancy.

Section 4.3.2. This procedure may generate up to n! ·2n configurations for a cell with n inputs.

This has two consequences. First, a Boolean library contains many configurations, leading to

more matches and larger mapping time. Second, N P −matching scalability is limited to cells

up to 6-inputs.

Although pattern-matching results are generally of inferior quality, the matching time is

significantly shorter. Indeed, pattern matching supports larger cells because its matching

complexity depends on the number of patterns generated which is typically small for full-DSD

functions after filtering for symmetries. Informally, the number of minimum-size patterns

for large full-DSD cells is significantly lower than the N P -configurations needed by Boolean

matching. Additionally, run time also benefits from the reduced number of matches per

cut compared to Boolean matching. Because of this, the technology mapping algorithm is

faster during selection. Moreover, despite Boolean matching’s capability to detect functional

redundancy in the subject graph, pattern matching can sometimes produce better results.

Example 4.3.5. Using an example observed in our experiments, let us suppose that the subject

graph presents the structure of Figure 4.3 and that the ASAP 7nm cell library [44] is employed.

The structure presents functional redundancies and implements the following Boolean function:

(a ∨ b ∨ c)∧ (c ∨ b ∨d). Since pattern matching is purely based on the structure, it ignores

redundancies and matches the subject graph to the 6-input OA33 cell, which implements the

following Boolean expression: (a ∨b ∨ c)∧ (d ∨ e ∨ f). Conversely, Boolean matching detects

a functional support of 4 variables and consequentially searches for 4-input cells to match.

However, due to variable b being binate (present in two polarities), such a cell cannot be found,

leading to a mapping that employs an AND3 and an AOI31 cell. This causes lower quality of

results for area and potentially for delay compared to pattern matching. ▲

Integrating Boolean and pattern matching

Initially, both pattern and Boolean libraries are generated as described in Section 4.3.2. In

hybrid matching, two distinct phases of cut enumeration are performed, one for pattern

matching and another for Boolean matching. Algorithm 4.3 shows the algorithm to compute

cuts and matches. First, cuts for pattern matching are enumerated and matched for every

node of the subject graph. Subsequently, for every node of the subject graph, cuts for Boolean

matching are enumerated and matched. However, at this step, the algorithm joins the set of

83

Chapter 4 . Technology Mapping for Standard Cells

Algorithm 4.3: Hybrid Matching
Input: Boolean library bool_l i b, pattern library pat_l i b, Boolean network N , cut size

Boolean k, cut size pattern l , bool do_pat ter n, bool do_bool , Cut limit p
Output: Match Set match_set

1 if do_pat ter n then
2 foreach node n ∈ N do
3 cut_pat [n] ← pattern_cuts_merge(cut_pat , n, l , p)
4 match_pat [n] ← pattern_match(cut_pat [n], pat_l i b, p)

5 if do_bool then
6 foreach node n ∈ N do
7 cut_bool [n] ← bool_cut_merge(match_set , n, k, p)
8 match_bool [n] ← bool_match(cut_bool [n], bool_l i b, p)
9 match_set [n] ← union(match_pat [n], match_bool [n], p)

10 return match_set

Boolean and structural cuts together with their matches. The cut merge operation follows

the recursive definition of Equations 2.5 and 2.6 to generate new cuts. The collected cuts

are organized according to the priority cuts paradigm [47] for which a limited number of

cuts are saved for each node and are sorted according to a cost function depending on delay,

area, and size. Only a limited number of p best cuts are selected based on their delay and

area flow under the unit model. This is a crucial point in the algorithm, as this procedure

allows us to combine the best results of both Boolean and pattern matching, overcoming the

respective shortcomings. Note that Boolean cuts are computed starting from the merged cut

sets. Additionally, hybrid matching can optionally perform only Boolean or pattern matching,

by selecting the parameters do_bool and do_pat .

Algorithm 4.3 requires two distinct phases of cut enumeration and matching since cuts

for Boolean or pattern matching have different characteristics. Cuts for Boolean matching

require the computation of the truth table, are limited to 6 inputs, and have redundancies

removed in the support. Contrarily, cuts for pattern matching need only a pattern index, are

canonicalized on symmetries, and keep functional redundancies. Given these differences, the

two types of cuts are incompatible during the cut merging operation.

4.3.4 Experimental Results

In this subsection, we evaluate the performance of hybrid matching in a technology mapper.

We compare it to the state-of-the-art Boolean mapper map implemented in ABC3, which

represents the baseline of our experiments. Additionally, we show the results of our mapper

in three settings: (i) using only Boolean matching; (ii) using only pattern matching; and (iii)

using hybrid matching.

The Boolean, structural, and hybrid matching methods have been implemented in C++17

3Available at: https://github.com/berkeley-abc/abc

84

https://github.com/berkeley-abc/abc

4.3 Hybrid Matching

Table 4.2: Results for Boolean, structural, and hybrid matching for delay-oriented technology
mapping and comparison against ABC map.

Benchmark ABC map Boolean Structural Hybrid
Area (µm2) Delay (ps) Area (µm2) Delay (ps) Area (µm2) Delay (ps) Area (µm2) Delay (ps)

adder 92.53 2577.43 84.03 2573.43 87.96 2573.79 84.03 2573.43
bar 325.47 168.08 356.23 168.08 218.84 157.72 216.32 172.61
div 5336.99 43765.09 4982.71 43765.25 4410.34 44048.23 4673.59 43836.68
hyp 16395.1 195822.72 14958.07 195345.77 15620.63 195788.75 15237.73 195276.66
log2 2177.57 3955.63 1908.24 3848.17 2022.71 4109.63 1737.34 3916.17
max 226.59 2213.23 209.22 2213.23 192.53 2257.11 172.77 2228.59
multiplier 1954.48 2738.95 1916.27 2667.36 1881.62 2726.37 1654.58 2649.57
sin 431.22 1814.85 446.42 1760.82 433.41 1852.61 407.40 1792.56
sqrt 1767.89 47442.32 1681.05 47438.44 1762.06 47769.50 1683.20 47438.60
square 1193.12 2516.39 1070.08 2505.10 1151.12 2521.89 1084.48 2503.20
arbiter 766.68 898.75 766.50 898.75 766.50 898.75 766.32 898.75
cavlc 41.57 187.04 38.80 187.04 37.32 186.44 37.52 186.07
ctrl 8.58 102.49 7.86 102.49 9.97 120.31 7.85 101.21
dec 30.83 65.72 30.83 65.72 30.11 66.19 27.44 66.15
i2c 78.65 182.65 73.69 182.65 69.11 184.57 69.38 182.65
int2float 13.93 181 12.95 181.00 11.84 181.17 11.31 182.22
mem_ctrl 2763.83 1103.42 2595.75 1100.46 2439.27 1130.11 2427.28 1104.37
priority 87.28 2501.95 82.37 2501.95 82.08 2510.03 82.25 2501.95
router 19.59 280.01 18.57 274.05 20.17 278.83 18.41 274.05
voter 1506.14 804.96 1519.56 749.36 1447.60 790.84 1538.53 755.33

Total time (s) 32.19 20.08 4.15 14.95
Ratio 1.000 1.000 0.953 0.991 0.934 1.011 0.889 0.994

and are available in the open-source logic synthesis framework Mockturtle4 [183] in the

command emap. For the experiments, we use the EPFL combinational benchmark suite [3]

containing combinational circuits in the form of AIGs. All the results were verified using

the combinational equivalent checker in ABC. We employ the ASAP7 7nm cell library [44],

pre-processed by OpenLane5. For every benchmark, we provide the area and delay results

and the total run time. The baseline has been obtained by applying the area-driven balancing

algorithm available in Mockturtle. The maximum cut size for Boolean matching is 6, and for

pattern matching is 9. Moreover, a maximum of 16 cuts are stored for each node.

The results for delay-oriented mapping are shown in Table 4.2. The hybrid mapper

achieves an average area improvement of approximately 11.1% compared to the mapper

in ABC, 6.5% compared to our Boolean mapper, and 4.5% compared to our structural mapper.

This improvement is due to the use of both Boolean and pattern-matching cuts during map-

ping. For instance, in benchmarks such as bar, max, and i2c, large cuts extracted using pattern

matching significantly reduce the area compared to the Boolean approach. Conversely, for

benchmarks such as hyp and voter, the employment of XOR and Majority cells extracted by

Boolean matching results in considerably better delay outcomes compared to the structural

mapper. The delay results are generally similar between the hybrid and Boolean mappers for

most benchmarks. However, for a few benchmarks, the hybrid mapper experiences slightly

worse delay values, leading to an small average delay increase over the Boolean mapper. This

is primarily because the hybrid mapper generates more cuts through pattern matching, most

4Available at: https://github.com/lsils/mockturtle
5Available at: https://github.com/The-OpenROAD-Project/OpenLane

85

https://github.com/lsils/mockturtle
https://github.com/The-OpenROAD-Project/OpenLane

Chapter 4 . Technology Mapping for Standard Cells

Table 4.3: Results for Boolean, structural, and hybrid matching for area-oriented technology
mapping and comparison against ABC map -a.

Benchmark ABC map -a Boolean Structural Hybrid
Area (µm2) Delay (ps) Area (µm2) Delay (ps) Area (µm2) Delay (ps) Area (µm2) Delay (ps)

adder 57.4 3548.84 57.4 3548.84 71.39 2813.73 57.4 3548.84
bar 191.81 238.53 155.19 228.93 128.74 200.57 128.74 199.39
div 3427.1 66322.78 3232.36 52243.49 3106.12 55875.19 3079.58 53745.74
hyp 14378.94 300243.28 13221.39 244958.55 14303.22 405054.5 13167.04 272523.78
log2 1643.99 6734.09 1499.35 5196.26 1619.63 7944.92 1501.99 5409.33
max 166.18 2862.23 152.23 2956.82 145.55 3830.87 139.06 2952.58
multiplier 1495.54 4961.61 1283.65 3302.57 1421.02 5675.77 1284.5 3448
sin 309.11 3056.93 277.14 2743.47 286.86 3545.27 270.05 2782.29
sqrt 1461.52 106239.08 1343.39 102465.89 1337.51 102273.54 1336.59 102003.83
square 1168.02 3711.58 1052.22 3483.91 1108 3079.15 1048.11 3508.29
arbiter 569.4 1018.69 557.72 999.87 557.72 1015.47 557.72 999.87
cavlc 39.01 221.56 35.53 223.11 34.16 247.51 34.13 263.16
ctrl 8.07 131.57 7.65 125.09 9.3 154.49 7.2 127.51
dec 27.5 85.83 27.73 90.42 28 90.46 27.06 86.33
i2c 77.9 214.29 71.42 258.99 67.33 269.73 67.16 267.86
int2float 13 205.02 12.05 200.71 10.99 202.35 11.04 197.6
mem_ctrl 2673.88 1799.5 2452.88 1834.53 2280.18 1724.13 2278.47 1706.2
priority 62.56 2795.01 57.65 4153.73 51.45 2943.53 51.17 2918.99
router 15.01 448.06 12.78 406.72 13.65 394.49 12.96 400.89
voter 851.87 1297.25 792.49 1101.06 840 1265.82 802.13 1185.61

Total time (s) 31.39 17.04 3.98 14.90
Ratio 1.000 1.000 0.919 0.964 0.936 1.045 0.885 0.953

of which are area oriented. As a result, cut filtering rules may more likely discard cuts that are

useful for delay optimization. Despite this minor negative impact, the overall area reduction,

which peaks at 39% in the case of bar, significantly outweighs it. Regarding run time, the

hybrid mapper achieves an average speedup of 1.25× compared to the Boolean mapper. This

improvement is mainly due to the use of structural cuts, which limits the number of Boolean

cuts computed at each node. Additionally, larger structural cuts generally present fewer

matches than smaller ones, thus reducing the number of matches per node and decreasing

the runtime during selection. Indeed, the structural mapper achieves the lowest run time.

The results for area-oriented mapping are shown in Table 4.3. Similar considerations apply

with the only difference of an area and delay improvement of 3.8% and 0.1%, respectively,

compared to the Boolean mapper.

4.4 Technology Mapping Using Multiple-output Cells

Cell libraries, such as standard cells, define a set of pre-designed and pre-characterized prim-

itives that are used as building blocks to create digital circuits. Typically, libraries contain

simple cells (e.g., a NAND2), complex cells (e.g., a XOR3), multiple-output cells (e.g., a full

adder), and sequential elements. Commonly, technology mapping algorithms efficiently

exploit technology libraries. However, multiple-output cells are often neglected due to the

complexity of detecting and evaluating them in the optimization loops of technology mapping.

Only a few frequent multiple-output cells, such as half adders and full adders, have partial

86

4.4 Technology Mapping Using Multiple-output Cells

support in industrial tools. These common elements are generally identified in ordinary logic

blocks, such as adders, which can be extracted from a register-transfer level (RTL) description

of digital hardware for which the mapping is known. Nevertheless, synthesis flows often

decompose these cells to meet timing constraints. Consequently, it is crucial to re-detect and

map multiple-output cells starting from a gate-level description to recover area and power

consumption. While practical solutions based on LUT merging techniques have been pro-

posed for FPGAs [81, 128, 210], mapping to multiple-output cells for standard-cell-based

designs remains an open problem.

Generalized matching (GM) [23] has been introduced as a multiple-output matching

technique that supports concurrent matching to multiple single-output cells or a multiple-

output cell. In [22], the authors propose an incremental remapping technique that utilizes

GM on local small windows of already mapped logic. Their method supports multiple-output

cells and evaluates substitutions symbolically by solving a minimum-cost GM problem using

binary decision diagrams (BDDs) [32] and algebraic decision diagrams (ADDs) [15].

The tool Yosys [211], which is part of the RTL to GDSII toolchain OpenLane, integrates

a limited support of half and full adder cells. Yosys identifies adder cells from RTL or by

performing circuit analysis. Adder cells are kept as don’t touch white boxes during logic

optimization and technology mapping. Hence, technology mapping is oblivious to multiple-

output cells resulting in a degradation of the potential delay, power, and area of the design.

In this work, we describe an alternative method to increase the support of multiple-output

cells in the optimization loops of a technology mapping algorithm. Primarily, we address

scalability since multiple-output cells substantially increase the complexity of mapping to an

intractable level. Our contributions include a fast multiple-output cell detection methodol-

ogy, an extension of Boolean matching, and a formulation of global and local area recovery

heuristics that supports multiple-output cells. In contrast to [22], we tackle the global tech-

nology mapping problem instead of local remapping. This approach has the advantage of

selecting cells and optimizing for inverters globally while meeting delay constraints without

iterating through many incremental steps. Instead of BDDs and ADDs, we pre-compute a

library to facilitate Boolean matching that can be rapidly accessed through canonicalization

and hashing. Moreover, we use a cut-based method to enumerate multiple mapping options

and cell selections. In area recovery, we employ a generalization of area flow [40, 124] and

exact area [140] to evaluate single- and multiple-output cells.

Our implementation is open-source and available in the library Mockturtle. To the best

of our knowledge, this is the first open-source implementation of a technology mapper for

standard cells that integrates the support for multiple-output cells.

In the experiments, we evaluate our approach using the ASAP7 cell library [44], which

contains the half adder and full adder cell. We compare our mapper against ABC showing a

7.48% area reduction on average when mapping for the minimal delay. When the delay is not

constrained, our approach obtains a considerable area reduction of 7.42%. Furthermore, our

87

Chapter 4 . Technology Mapping for Standard Cells

method reduces the area by 5% on average compared to the method in Yosys in which adder

cells are considered as white boxes during technology mapping. Our approach demonstrates

scalability to large networks with an average run time increase of 8%. We consider this

overhead fairly limited since large circuits are mapped in a few seconds. Finally, we discuss

the usage of other multiple-output cells.

4.4.1 Extraction of Multiple-output Cells

In this subsection, we present a method to identify multiple-output cells in a Boolean network.

This process requires: (i) an elaboration of the cell library to be suitable for Boolean matching;

(ii) a multiple-output Boolean matching method; and iii) a multiple-output cut computation

procedure.

Matching library generation

Given a cell library, we define a data structure, called matching library, that facilitates fast

Boolean matching. The matching library links a Boolean function represented as a truth table

to a set of cells that implements it.

In technology mapping, delay, power, and area can be minimized by exploiting different

configurations of cells based on the N P N -equivalence classes [38, 202]. Specifically, permu-

tations increase the number of matches, and negations play a crucial role in the insertion of

inverters.

For single-output library cells, the matching library is generated similarly to [202] by

enumerating cell configurations based on N P -equivalence classes. Hence, given a function

f to match, the matching library returns a set of cells in the N P −equivalence class of f . Each

one of them has attached an N P -configuration so that its functionality matches f . Since our

implementation matches in two polarities (complemented and uncomplemented), the output

inversion is not considered at this stage.

For multiple-output cells, the procedure is more involved. The functionality of a multiple-

output cell is defined through a set R of functions, one for each output pin. Due to this higher

degree of freedom compared to single-output cells, the multiple-output matching library

utilizes two additional operators NO , representing output negations, and PO , representing

output permutations. First, the classification of cells in N P −equivalence classes is extended

such that each configuration of input negations and permutations is applied concurrently to

the functions in R. Second, to have a fast matching, the N P −configuration of the multiple-

output cell is canonicalized. This is achieved in two steps. First, each individual output

function is negated to be normal, i.e., a Boolean function f is normal if f (0,0, . . . ,0) = 0. Second,

a multiple-output function is canonicalized by sorting output functions in lexicographical

order.

88

4.4 Technology Mapping Using Multiple-output Cells

Example 4.4.1. Let us consider a canonicalization example on a half adder cell described by

the functionality set R = {“0110",“1000"}, which consists of a XOR2 and an AND2 function

and is represented using truth tables. Let us select a configuration of the cell composed of

negations over the input variables NI = {x0x1 → x̄0x1} and no permutations P I . After applying

the input N P operators, the resulting function is {“1001",“0100"}. Finally, the configuration is

canonicalized leading to the multiple-output function {“0100",“0110"} where the XOR2 has been

normalized and the outputs have been permuted in lexicographical order. The corresponding

output operators are NO = {o0o1 → o0o1} and PO = {o0o1 → o1o0} (the negation is applied

before the permutation). ▲

multiple-output cells are represented as a set of single-output cells each corresponding to

an individual output pin. We refer to these cells as virtual output-pin (VOP) cells. VOP cells

describe the pin-to-pin delay relation and the functionality of each output pin. In our method,

we compute an area contribution associated with each VOP cell. Typically, functions of VOP

cells are also offered by single-output cells in a technology library. For instance, a full adder

cell is covered by a MAJ3 and a XOR3 cell. In this case, the area contribution of a VOP cell is

computed by proportionally scaling the area of each VOP cell implemented as a single-output

cell of the library such that the sum over all VOP cells equals the area of the multiple-output

gate. If some VOP cells are not offered by the cell library, a fixed scaling factor is employed.

The area contribution is used for area estimations during technology mapping, in particular

during the exact-area phase.

Example 4.4.2. Given the cells HA (half adder), AND2, and XOR2 with an area of 2.3, 1.3, and

2.0, respectively, the VOP cells area contribution is of 0.9 for the AND2 pin and 1.4 for the XOR2

pin. ▲

Multiple-output Boolean matching

Boolean matching assigns to a function a set of gates that can implement it. In technology

mapping, Boolean matching is performed on local regions of a network defined by cuts. For

single-output cells, matching consists of a simple look-up of the cut function in the matching

library. Similarly to [38, 202], our approach matches while considering two polarities for each

gate (uncomplemented, complemented) to enable better logic sharing of inverters or to avoid

additional inverter delay costs.

For multiple-output cells, matching assigns a multiple-output cut to a set of VOP cells.

The matching is achieved in two steps. First, the functions of the cut roots are normalized

and permuted to be canonical according to the matching library rules. Second, the canonical

function is looked up in the matching library. The output negations and permutations are

then adjusted to assign the individual VOP cells to the corresponding cut roots.

89

Chapter 4 . Technology Mapping for Standard Cells

Algorithm 4.4: Multiple-output cells detection
Input: Subject graph N , Maximum k, Maximum l , Matching library lib
Output: Set of multiple-output cuts multi_cuts

1 cuts ← enumerate_cuts(N , k);
2 /* filter cuts based on individual multiple-output cells */
3 cuts ← filter_match_cuts(cut s, lib);
4 /* hash the cuts based on the leaves */
5 cuts_h ← hash_cuts(cut s);
6 /* combine cuts sharing the same leaves and match */
7 multi_cuts ← combine_cuts(cut s_h, l , lib);
8 /* remove incompatible kl-cuts */
9 multi_cuts ← filter_multi_cuts(multi_cuts);

10 return multi_cuts

Multiple-output cut computation

The multiple-output cut computation may require significant run time since the number

of cuts grows significantly with respect to the number of nodes in a Boolean network. K L-

cuts [128] is an algorithm that can be used to generate generic multiple-output cuts. However,

some specific cells, such as adder cells, can be identified using a much simpler methodology.

Hence, in this section, we propose a multiple-output cut enumeration that considers a class of

cells in which each output has all the cut leaves in its support. These cuts describe cells such

as half adder and full adder and can be extracted very rapidly throughout a Boolean network.

Algorithm 4.4 presents a high-level view of the steps to enumerate and match multiple-

output cuts. The inputs are a subject graph N , a maximum cut size k, a maximum cut merging

value l , and the matching library l i b. First, k-feasible cuts are enumerated for every node

of the network and the associated function is computed. Second, filtering rules are applied

to reduce the number of cuts to combine. Specifically, we select only cuts whose function is

N P N -equivalent to a VOP cell function, i.e., the cut may be part of a matchable multiple-

output cut. Next, cuts are arranged in groups such that each cut in a group shares the same

leaves. This is achieved using a fast algorithm that hashes the leaves of cuts. Then, cuts in

each group are combined up to l outputs and directly matched. Matched multiple-output

cuts are added to a list. Alternatively to cut hashing, kl-cuts [128] can be used to generate

multiple-output cuts.

While combining cuts, filtering rules are employed to remove partially dangling multiple-

output cuts. Specifically, a multiple-output cut with a set of roots L is partially dangling if

∃n ∈ L s.t. n ∈ MFFC(L \ n). Informally, a partially dangling multiple-output cut has an

output pin that cannot be connected externally since it is only used internally in the cut.

The last step of Algorithm 4.4 further filters cuts to be compatible. Two multiple-output

cuts Ci and C j having the set of roots Li and L j are incompatible if Li ∩L j ̸= ; and Li ̸=L j .

This filtering rule selects multiple-output cells making sure they do not overlap if they do not

share the same outputs. This constraint is crucial to limit the run time of technology mapping,

90

4.4 Technology Mapping Using Multiple-output Cells

a b c d

C0

C1

C2

Figure 4.4: Example of compatible and incompatible cuts

which would require undoing and re-evaluating many mapping choices with an exponential

increase.

Example 4.4.3. Figure 4.4 shows three multiple-output cuts C0, C1, and C2 with outputs

L0 = {a,b}, L1 = {b,c}, and L2 = {c,d}. Cuts C0 and C2 are compatible since L0∩L2 =;. Cuts

C0 and C1, and also C1 and C2, are instead incompatible. Hence, our algorithm removes, for

instance, C1 from the list of multiple-output cuts. ▲

Since cells that can be matched to incompatible cuts are not very common in designs for

typical cell libraries (that contain very few multiple-output cells), we argue that the loss in qual-

ity deriving this filtering rule is limited. On the other hand, if we extend cell libraries to contain

multiple-output cells derived from the compression of random logic, the presented method-

ology would remove many possible matches affecting the potential quality. However, when

multiple-output mapping is used for re-mapping a small window of logic, the incompatible

multiple-output cell choices can be enumerated with a limited run time overhead.

4.4.2 Technology Mapping using Multiple-output Cells

In this subsection, we present how a technology mapping algorithm can be extended to

support multiple-output cells. Specifically, our method maps to multiple-output cells only

when the design cost improves compared to using single-output cells. Moreover, it handles

the optimization of inverter cells across multiple-output gates and delay minimization.

Algorithm 4.5 shows the high-level pseudo-code of the mapper. All the steps are analyzed

in detail in this subsection. First, the multiple-output cuts are computed and matched using

Algorithm 4.4. If multiple-output cells have been already detected, e.g., they have been

extracted from a register-transfer level (RTL) hardware description, they can be added at this

step as multiple-output cell choices for the mapper. Next, the network is sorted in a specific

topological order guided by multiple-output cuts. This is necessary to map the whole network

in one forward and backward pass. Then, single-output cuts are computed using priority

cuts [141]. At this step, our algorithm checks that the enumerated cuts contain also the single-

output sub-cuts of the multiple-output ones. This is desirable in some cases to reduce the

91

Chapter 4 . Technology Mapping for Standard Cells

Algorithm 4.5: Technology mapping algorithm
Input: Subject graph N , Maximum k, Maximum l , Matching library lib, cost function C
Output: Mapped network M

1 /* enumerate and match multiple-output cuts */
2 multi_cuts ← compute_multioutput_cuts(N , k, l l i b);
3 /* compute the constrained topological order */
4 topo_order ← constrained_topo_order(N , mul ti _cut s);
5 /* compute and match single-output cuts */
6 cuts ← compute_cuts(N , k, l i b, multi_cuts, C);
7 /* cover the network and refine the mapping */
8 M ← cover(N , topo_order, cuts, multi_cuts, l i b, C);
9 return M

impact of unmapping multiple-output cells (a trivial decomposition can be used). Finally, the

mapper covers the network by selecting a subset of cuts and associated cells.

Technology mapping consists of several iterations of mapping and covering. A mapping

pass selects a candidate cell based on a cost function at each node. Covering extracts a

complete mapping solution selecting a reachable subset of the cells starting from the POs.

First, our implementation performs a round of delay-oriented mapping that selects for each

node in topological order the cell with the smallest arrival time. This round finds the worst-

case delay at the outputs and identifies critical paths. Following iterations have the objective of

reducing area and/or power subjected to the delay constraints. In our technology mapper, we

employ area flow to globally optimize for the area and exact area to locally refine the cover for

area or power. While delay and area flow rounds are carried bottom-up (in topological order),

exact area is carried top-down (in reverse topological order). Instead of propagating arrival

times forward, exact area rounds propagate required times backward to select the candidate

cells.

Constrained topological order

Technology mapping is generally a fast algorithm with a time complexity that is linear with

respect to the number of nodes in the network (under the priority cuts paradigm [47]). Ideally,

we want to maintain the same complexity also when mapping multiple-output gates. In tech-

nology mapping, as for many other synthesis algorithms, networks are stored in topological

order to guarantee that when a node is processed, the nodes in its transitive fan-in (TFI) have

already been processed. For instance, this supports efficient propagation of arrival times while

mapping. Our algorithm, presented in the next sub-section, follows this practice, i.e., nodes

are mapped in topological and reversed topological order.

Example 4.4.4. Let us consider a network and a topological order T . Let us select three arbitrary

nodes p, q, and t in T = {0, . . . , p, . . . , q, . . . , t , . . . ,m} such that p ∈ TFI(q), q ∉ TFI(t), and there

is a 2-output cell that can implement a multiple-output cut rooted in p and t. Initially, all the

nodes preceding t in the topological order, including p and q, are mapped using single-output

92

4.4 Technology Mapping Using Multiple-output Cells

cells. Next, p and t are mapped using the 2-output cell. Consequently, the previous arrival

time computed at q and used at q to compute the best match may be invalid since node p in

q’s TFI changed the mapping. Moreover, the new mapping may unlock a different and more

suitable mapping choice at node q. Thus, an algorithm that maps to multiple-output gates

might have to re-map some of the nodes between roots of multiple-output cells in the topological

order. However, we could avoid re-processing node q by picking a different topological order

T = {0, . . . , p, . . . , t , . . . , q, . . . ,m}, where t precedes q. ▲

Our algorithm performs the topological ordering by positioning multiple-output roots

“close” to each other. In particular, given two roots p and t of a multiple-output cut with

t > p in the topological order, it is always possible to have them topologically next to each

other if p ∉ TFI(t) or p ∈ fan-ins(t). Informally, if there is a path longer than 1 that connects

two roots, there is at least a node that is between p and t in the topological order. In our

topological sorting algorithm, when a node is a root of a multiple-output cut, first the TFI of

all the roots is visited, then the roots are stored close to each other. This algorithm has the

same computational complexity as a depth-first search.

Node mapping

Typically, technology mapping is carried out for several rounds to refine the cover according

to specific cost functions. The first round is usually delay oriented with the objective of

identifying the worst-case delay and critical paths. The following rounds optimize for area

and/or power and are constrained on the maximum allowed delay. Mapping passes are

commonly carried out in a bottom-up fashion, while the cover selection and the required time

propagation are carried out in a top-down fashion.

Algorithm 4.6 shows a forward pass to map nodes that can be found in a delay or area

flow round. First, the required times at each node are computed from the previous round if

available. Then, each node is mapped in topological order. Node mapping works by initially

covering the two polarities (complemented and uncomplemented) using single-output cuts.

The best-fitting cell is chosen based on the selected cost function (e.g., delay) and the required

time. If the latter allows it, only one polarity is implemented and the other is realized through

an output inverter. Finally, multiple-output-cell mapping is performed on the nodes that

belong to a multiple-output cut. However, multiple-output mapping is evaluated for all the

roots only when the highest-index root (with respect to the topological order) is processed.

In this way, we ensure that all the roots of the cut have previously been mapped using single-

output cells. This is necessary to compute accurate costs by comparing multiple-output cell

implementations to single-output ones. A multiple-output cell is selected if it improves the

cost function. If the multiple-output mapping is successful, some nodes in the topological

order among the roots of the multiple-output cut might need to be remapped. This is to ensure

that correct arrival times are propagated and that the best cell choices are made. Anyway, this

step is often unnecessary if the multiple-output roots are not leaves of a selected cut in the

93

Chapter 4 . Technology Mapping for Standard Cells

Algorithm 4.6: Node mapping pass
Input: Subject graph N , Mapping M , Topological order topo_order, Cuts cut s, Multiple-output

cuts multi_cuts, Matching library lib, cost function C
Output: New mapping M ′

1 /* compute the required time */
2 req ← compute_required(N , M , lib)
3 M ′ ← empty_mapping(N);
4 foreach Node n ∈ topo_order do
5 /* map node using single-output cells */
6 map_positive_polarity(M ′, n, cut s(n), l i b, C , req);
7 map_negative_polarity(M ′, n, cut s(n), l i b, C , req);
8 /* try to drop one polarity if there is enough slack */
9 select_polarity(M ′, n, req, C)

10 /* highest index output-pin of a multiple-output cut */
11 if multioutput_root(n) then
12 map_multioutput(M ′, n, multi_cuts, cut s, l i b, C , req)
13 remap_conflicts(N , M ′, n, cut s, l i b, C , req)

14 return extract_cover(M ′)

current mapping. Finally, a cover is extracted starting from the POs in reverse topological

order and the mapping is returned.

During the delay and area flow rounds, the mapping is improved by picking the best cell

implementation at each node according to the selected cost function. The cover is only known

after a top-down computation that selects the best cuts starting from the POs and recurs

on the leaves. Consequently, after a bottom-up round not all the outputs of the multiple-

output cells are guaranteed to be used in the cover. This issue is not addressed during these

iterations. Nevertheless, during exact area rounds the cover is known and is locally improved

to guarantee that all the output pins of the selected cells are used, else nodes are re-mapped

for a more suitable single-output cell implementation. Moreover, exact area rounds are carried

out in reverse topological order to increase the likelihood of connecting all the output pins of

multiple-output cells. Contrarily to Algorithm 4.6, for exact area rounds, multioutput_root(n)

is true for the lowest index output-pin of a multiple-output cut.

The node mapping pass complexity is generally linear with respect to the number of nodes

in the network. However, conflicts (line 15 of Algorithm 4.6) increase the complexity by having

to re-process some nodes in the topological order among the multiple outputs. Anyhow, in

practice no more than 0.5% of the nodes are ever re-mapped over the EPFL benchmarks [3].

Multiple-output cell mapping evaluation

We evaluate multiple-output cells by re-mapping simultaneously roots of a multiple-output

cut. The pseudo-code during an area flow round is shown in Algorithm 4.7. Initially, all the

roots are assigned to single-output cells. We evaluate a multiple-output cell G by assigning to

94

4.4 Technology Mapping Using Multiple-output Cells

Algorithm 4.7: Map to multiple-output cells
Input: Mapping M , Root n, Multiple-output cuts multi_cuts, Cuts cut s, Matching library lib,

cost function C , Required time req
Output: Modified mapping M

1 foreach Multiple-output cut L ∈ multi_cuts(n) do
2 foreach Cell configuration G ∈ lib(L) do
3 /* Evaluate multiple-output cell */
4 next_cell ← false
5 foreach Root p ∈ L.r oot s do
6 if compute_arrival(M, L, G(p)) > req(p) then
7 next_cell ← true
8 break

9 if next_cell then
10 continue

11 /* Evaluate improvement: area flow and delay */
12 if improvement(M, G, L, C) then
13 commit_cell(M , G , L)

14 return M

each root p the corresponding VOP cell (G(p)) and individually evaluating them. In particular,

the arrival time is checked against the required time. After the arrival time is checked, delay

and area flow are used to evaluate the improvement and commit a multiple-output cell if it

has a better cost. A commit assigns VOP cells to each root. This process is repeated for all

available cuts and cells.

The area flow (AF ′) of a node n involved in a multiple-output cell G and a multiple-output

cut L is generalized as follows:

AF ′(n) = Ar ea(G)+|L.r oot s|×∑
l∈L.leaves AF ′(l)∑

p∈L.r oot s Re f s(p)
(4.14)

where Refs represent the estimated references of nodes in the cover. Initially, during the first

round of the mapper, Refs(n) takes the fan-out count of node n. Every following round it is

updated using a linear combination of the previous value and the actual referencing in the

cover. Note that if the generalized area flow formula is applied to a single-output gate, the

equation reduces to the known formulation. In our implementation, each root of a multiple-

output cut references the leaves. This is why the area flow of a multiple-output cut is multiplied

by the number of roots. If AF is computed and exact references are known, the sum of AF over

the POs gives the area of the cover.

In an exact area iteration, the cover is known from previous passes and it is locally im-

proved. Specifically, for each node in the cover exact area chooses a cell such that the area in

the MFFC of the node is minimized. This measure is extracted using a recursive cut referenc-

ing/dereferencing (Algorithm 4.1).

95

Chapter 4 . Technology Mapping for Standard Cells

In exact area passes, a multiple-output cut is evaluated only if all the output pins are

referenced in the cover. This removes partially-connected multiple-output cells originating

from area flow iterations. Initially, all the roots of a multiple-output cut are assigned to single-

output cells. The roots are then recursively dereferenced to measure the exact area of the

roots and remove them from the current mapping. A multiple-output cell is then evaluated

by checking the delay against the required time and measuring its MFFC area. If the cell

replacement is accepted, the multiple-output cut is referenced for each root, or else the

previous implementation is restored.

4.4.3 Experimental Results

In this subsection, we present experimental results on using multiple-output cells during

technology mapping. We evaluate our method using the ASAP7 cell library [44], which defines

two multiple-output cells, namely the half adder and full adder with inverted outputs. The

gain-based delay model, considers these cells slightly slower than the single-output counter-

parts. For our experiments, we use the EPFL combinational benchmark suite [3] containing

several circuits provided as and-inverter graphs (AIGs). The baseline has been obtained by

applying the area-driven balancing algorithm available in Mockturtle6 [183].

The mapper has been implemented in C++17 in the open-source logic synthesis framework

Mockturtle as a command emap. The experiments have been conducted on an Intel i5 quad-

core 2GHz on MacOS. All the results were verified using the combinational equivalent checker

in ABC7.

Comparing against ABC

In this experiment, we test emap for delay-oriented mapping against the default technology

mapper in ABC (command &nf -p). We enable the use of multiple-output cells in our mapper.

We use the same settings for cut size and cut limit per node for both mappers.

Table 4.4 shows the results. We evaluate our mapper in terms of the area reduction and

the geometric mean of the area and delay with respect to ABC. Our implementation effectively

finds multiple-output cells. Specifically, our mapper selects multiple-output gates over non-

critical paths to guarantee the minimal arrival time found during the first delay pass. Yosys

and state-of-the-art mappers do not support this feature. In some benchmarks such as adder,

no multiple-output cells are used due to the delay constraints. In fact, multiple-output cells

have a higher delay than individual single-output cells in the ASAP7 library. While having a

similar or better delay than ABC, our mapper has an average area reduction of 7.48%. For

the hyp and square benchmarks, our mapper improves the area result of ABC by 20%. Our

mapper has worse results than ABC for only the bar benchmark. This is mainly due to worse

6Available at: https://github.com/lsils/mockturtle
7Available at: https://github.com/berkeley-abc/abc

96

https://github.com/lsils/mockturtle
https://github.com/berkeley-abc/abc

4.4 Technology Mapping Using Multiple-output Cells

Table 4.4: Comparing our mapper against ABC for minimal delay

Benchmark Baseline ABC &nf -p Multiple-output cell mapping
Size Depth Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Multiple-output Time (s)

adder 1020 255 1087.54 2520.72 0.06 1052.78 2514.41 0 0.03
bar 3336 12 2512.67 147.76 0.11 2835.74 151.76 0 0.08
div 45050 4405 46156.14 42422.38 1.82 41191.66 41964.47 4 2.11
hyp 214335 24801 197464.66 176397.09 8.16 157949.52 175299.08 12335 14.28
log2 31881 410 21997.83 3589.91 6.46 21612.64 3567.67 507 4.27
max 2865 229 2382.70 2114.45 0.19 2361.95 2106.08 0 0.11
multiplier 26943 266 24013.34 2596.60 1.04 19935.90 2576.03 652 1.56
sin 5383 186 5127.26 1614.09 0.71 5085.07 1583.31 49 0.74
sqrt 18372 6049 20576.44 43721.45 0.60 18066.04 43010.26 513 1.27
square 18264 250 13670.21 2446.85 0.64 10794.21 2440.58 1178 1.06

Reduction 7.48% 0.48% -16.92%
Geomean 7614.05 7284.50

cuts at the nodes. In fact, the benchmark does not contain any multiple-output cells defined

in the ASAP7 cell library. The experiment shows a 16.92% run time overhead compared to ABC

which is reasonable considering that our implementation is generally 9% slower than ABC

even when multiple-output cell mapping is disabled.

Comparing to a two-step approach

In this experiment, we consider area-oriented mapping without delay constraints. We pro-

pose three flows. The first one performs a vanilla area-oriented mapping without mapping

to multiple-output cells. The second one emulates the approach in Yosys8. It is a two-step

approach that detects full adders and half adders (command extract_fa), saves them as don’t

touch white boxes, and then maps the rest of the logic. We re-implemented the Yosys ex-

traction algorithm following the detection algorithm presented in Section 4.4.1, which offers

significantly better run time, scalability to large designs, and results. Additionally, we use our

mapper instead of ABC since our implementation typically provides 7% better area compared

to map -a in ABC for area-oriented mapping (when not using multiple-output cells). The third

flow integrates multiple-output detection and selection in technology mapping. We show that

managing multiple-output cells in a global technology mapping algorithm outperforms the

two-step approach.

Table 4.5 shows the results. We use the same baseline as Table 4.4 to carry out the experi-

ments. We evaluate the flows in terms of area and delay reduction with respect to the vanilla

implementation. The two-step approach reduces the area of the vanilla implementation by

2.41% on average. This method is particularly run time efficient since technology mapping is

decomposed into two independent steps. The multiple-output approach is the best one with

an average area reduction of 7.42%, outperforming the two-step approach. The total run time

increase is about 8% compared to the vanilla implementation which is reasonable considering

the improvement in quality. Furthermore, if we consider only the arithmetic benchmarks (the

first 10), our mapper improves the area by 12.7% against the 4.42% of the two-step approach.

8Available at: https://github.com/YosysHQ/yosys

97

https://github.com/YosysHQ/yosys

Chapter 4 . Technology Mapping for Standard Cells

Table 4.5: Area-oriented mapping in different settings

Benchmark Vanilla mapping Multiple-output detection + mapping Multiple-output cell mapping
Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Multiple-output Time (s) Area (µm2) Delay (ps) Multiple-output Time (s)

adder 743.92 3910.79 0.03 596.02 7046.61 128 0.01 551.23 5376.32 128 0.03
bar 2062.66 209.60 0.08 2062.66 209.60 0 0.17 2062.66 209.60 0 0.10
div 29346.85 45188.06 1.91 28251.16 112512.28 3911 1.16 24486.23 90780.33 3904 2.02
hyp 157306.39 225518.08 11.73 156490.92 360506.91 20927 7.93 134586.34 218205.08 15853 13.65
log2 19031.21 4742.11 4.25 17561.92 8680.94 1461 4.34 15915.06 7393.68 1359 4.31
max 1860.41 2410.55 0.38 1860.41 2410.55 0 0.44 1860.41 2410.55 0 0.38
multiplier 16760.62 3638.24 1.68 15009.51 7701.35 1511 1.35 13219.61 6724.49 1467 1.66
sin 3585.97 2410.42 0.94 3361.07 3636.69 265 0.85 3132.99 3194.23 204 0.88
sqrt 12676.20 55493.75 1.42 14564.95 86093.17 1830 1.53 13107.36 64646.94 804 1.71
square 12966.38 3065.54 1.06 11600.65 7304.42 1471 0.56 9940.72 6974.56 1322 1.06
arbiter 7401.25 923.08 2.27 7401.25 923.08 0 2.80 7401.25 923.08 0 2.35
cavlc 441.37 221.24 0.03 446.03 217.10 7 0.04 446.50 223.54 2 0.02
ctrl 99.84 115.60 0.00 101.01 130.63 1 0.01 100.78 115.60 0 0.00
dec 289.26 56.63 0.16 289.26 56.63 0 0.18 289.26 56.63 0 0.16
i2c 911.19 210.04 0.09 911.42 210.04 2 0.12 911.19 210.04 0 0.10
int2float 146.50 187.80 0.01 146.50 187.80 1 0.01 146.50 187.80 0 0.01
mem_ctrl 30658.97 1530.06 3.23 30650.35 1512.75 45 5.27 30598.68 1512.75 5 3.47
priority 661.11 2475.18 0.07 661.11 2475.18 0 0.08 661.11 2475.18 0 0.07
router 171.69 374.68 0.09 178.22 708.09 38 0.02 171.21 522.58 15 0.07
voter 7190.60 895.47 0.59 6468.51 1372.72 1257 0.13 5534.16 1197.18 1183 0.62

Reduction 2.41% -44.02% 7.42% -26.27%
Total 30.02 32855 27.00 26246 32.67

The multiple-output mapping generally uses fewer multiple-output cells than the two-

step approach while outperforming it. Our implementation effectively leverages mapping

heuristics to select the proper cells based on the global context. Moreover, even if the delay is

not constrained, our approach often finds solutions with both better area and delay. Only the

sqrt benchmark has 3.4% worse area when mapping using multiple-output gates. Nevertheless,

this is due to area recovery heuristics. Specifically, the multiple-output mapper has 5.2% better

area until the end of area flow rounds. However, subsequent local rounds using exact area

are considerably more effective on the vanilla flow (with a 13.37% area reduction) resulting in

the mentioned quality difference. An interesting result is obtained on the adder benchmark.

Although the two multiple-output flows use the same number of multiple-output cells, our

proposed method achieves better area and delay by selecting different configurations of

the multiple-output cells (input and output negations) such that the number of inverters is

globally minimized (192 instead of 256).

In this experiment, we have not constrained the delay during mapping for two reasons:

(i) Yosys’ method does not support effective delay minimization when adder cells are used

(since they are considered as white boxes); and (ii) we want to test how much additional area

is recovered with the proposed method against the state-of-the-art approach and Yosys. In

addition, multiple-output cells have higher propagation delay compared to single-output cell

realizations. Hence, compared to the vanilla flow case, delay increase is justified.

4.4.4 Discussion

In the previous subsection, we showed the potential of supporting multiple-output cells in a

technology mapper. Our method effectively maps to multiple-output gates when convenient,

98

4.4 Technology Mapping Using Multiple-output Cells

achieving a substantial area reduction both in area-oriented and delay-oriented mapping.

However, the ASAP7 technology library, like other open-source libraries such as SKY130,

contains only half and full adders. We predict that by notably increasing the number of

multiple-output cells the mapper would be less efficient at handling them. This is mainly due

to a very large number of matches and incompatible cuts (explained in Section 10) that must

be filtered to achieve scalability to large designs.

We perform an experiment to test the limits of our mapping algorithm and to identify

which multiple-output standard cells are worth designing to enhance the quality of results.

In this experiment, we generated 120 two-output cells by merging single-output cells of the

same support size from the ASAP7 library, assuming a 20% reduction in area. Our mapper

correctly matches some of the generated multiple-output cells. However, circuits rarely

contain multiple-output functions (with shared support) that differ from common cells, such

as the N P N classes XOR2-AND2 (half adder) or XOR3-MAJ3 (full adder), and that can be

extracted structurally. Consequently, the number of matches for the other generated two-

output cells is low. Additionally, these cells are often not used to produce a mapping solution.

Most of the generated multiple-output cells represent the compression of random logic. As

such, these cells do not lead to any structural advantage during global technology mapping.

Additionally, due to cut filters and the algorithm design for scalability, a library with many

multiple-output cells can limit the effectiveness of the proposed approach. In this work, we

addressed scalability primarily. In particular, we obtained a quick algorithm with a similar run

time to state-of-the-art mappers.

To mitigate the decrease in quality when many multiple-output cells are defined, we

propose to limit the number of cells handled by a global technology mapper. The selected ones

should have specific regular structures able to affect the global mapping. In the experiments,

we showed the potential of integrating half and full adders. Other appearing cells in our

experiments are: (i) O1 = abc O2 = ab +ac ; (ii) O1 = abc O2 = c(ā + b̄)+abc̄. Additionally, we

noticed that it is more effective to handle cells that compress random logic later in the flow

through incremental local remapping steps as performed in [22].

Despite these findings, the algorithms presented in this paper can support multiple

multiple-output cells and are not restricted to only half adders or full adders. If we limit

the mapper to work on a small logic cone (e.g., in the order of tens of nodes), cut filters can

be relaxed to include incompatible cuts. K L-cuts [128] can also be used to enumerate more

multiple-output cuts. Conflicting configurations of multiple-output cells can be enumerated

and mapping can be rapidly performed for each one of them, also in parallel. Then, the best

solution is committed. This method would be a part of a re-mapping engine that extracts

windows of mapped logic and re-maps them using a better implementation. Moreover, this

approach would extend the remapping algorithm in [22] that focuses only on one multiple-

output cell at a time. The integration of this mapper into a remapping engine is out of the

scope of this work.

99

Chapter 4 . Technology Mapping for Standard Cells

4.5 Improving Covering Algorithms for Technology Mapping

In this section, we propose new algorithms to improve the covering for standard cell networks.

Rather than proposing new heuristics, this section focuses on methods to better estimate the

fan-out references of nodes during mapping. Thus, we study approaches to better estimate

the value f (l) of Equation 4.6. In particular, we first review the state-of-the-art method to

estimate the fan-out references. Then, we propose two new approaches to improve covering:

(i) a policy for fan-out estimation and match evaluation; and (ii) a method to improve area

under delay constraints using alternative matches.

In the experimental results, we show that the fan-out estimation policy and the match

evaluation methods reduce the average area by 3.78% when mapping for best delay. Alternative

matches further improve the area by an additional 0.88%. The impact of alternative matches

becomes evident when mapping under delay constraints. When fixing the delay constraint to

be 5% higher than the best found, alternative matches reduce the area by 2.04% on average.

4.5.1 Related Works

As introduced in Section 4.2.3, during the covering phase, the best match for each node is

extracted in topological order. In standard cell mapping, it is convenient to select two best

matches at each node: one representing the uncomplemented (positive) polarity, and one

representing the complemented (negative) polarity [38, 202]. Considering both polarities at

each node allows for accurate area estimations by considering inverter sharing. Furthermore,

it helps leverage logic duplication to avoid additional inverter delay costs. We explain the

advantages of covering using two polarities using Figure 4.5. We represent complemented

connections using dashed edges and uncomplemented connections using continuous edges.

In Figure 4.5a, we show how two polarities support better area estimations.

Example 4.5.1. Let us consider node p with two negated outputs and a cell library that contains

a 2-input AND cell (AND2) with area 2 and an inverter with area 1. Let us first consider a single

match model for covering. The only possible match rooted in p is an AND2 with area flow 2. At

node r a match would pick an AND2 with an additional inverter over the edge (p,r), resulting

in area flow 3+2/2 = 4. Similarly, at node s a match would pick an AND2 with an additional

inverter over the edge (p, s), with area flow of 4. The total area estimation at p and s is 8 even if

the cover has a minimum area of 7 because the inverter can be shared. This is the consequence

of mapping using a single match, which creates an unnecessary inverter duplication in the

area estimation. Although these redundancies could be removed with a circuit analysis after

mapping, the mapper would be affected by wrong area estimations during the covering phase

worsening the potential quality of results. The solve this problem, we consider two matches

at each node for both polarities. At node p we consider an AND2, with area flow of 2, for its

uncomplemented match and an AND2 with an output inverter, with area flow of 3, for its

complemented match. The uncomplemented match at node r considers an AND2 cell connected

100

4.5 Improving Covering Algorithms for Technology Mapping

a b c d

p

r s

∧

∧ ∧

(a) Inverter sharing

a b c d

p

r s

∧

∧ ∧

(b) Optimal delay

Figure 4.5: Advantages of covering using two polarities

to the complemented match at node p, with area flow of 2+3/2 = 3.5. The matches at node s

area computed similarly, resulting in an area flow of 3.5 for the uncomplemented match. The

total area estimation at p and s is now accurate. ▲

In Figure 4.5b, we show how matching in two polarities may lead to better delay results.

Example 4.5.2. Let us consider a unitary delay model (i.e., a constant delay model where cells

have unitary propagation delays) and the previous cell library with the addition of a 2-input

NAND cell (NAND2). When considering single match covering, p is arbitrary mapped using one

cell between AND2 and NAND2. In this example, let us consider an AND2 cell. Due to this choice,

the best delay at node r is 3 since an inverter is needed on the edge (p,r). When considering

matching in two polarities, node p is assigned to both an AND2, for the uncomplemented

polarity, and a NAND2, for the complemented one. In this case, node r uses the complemented

polarity match of p (NAND2) to achieve a delay of 2. Instead, node s uses the uncomplemented

polarity match of p (AND2). This operation duplicates node p to minimize the delay. Generally,

this operation is evaluated in terms of delay gain and area increase. ▲

4.5.2 Referencing Policy and Gate Selection

We investigate methods to estimate the fan-out references for area flow computation. This

subsection delves quite deeply into technology mapping algorithms. As described in Sec-

tion 4.5.1, our method uses two best matches at each node to model the complemented and

uncomplemented behavior. Hence, each node is associated with two fan-out estimation

and two area flow values, for the complemented and uncomplemented match. However,

coordinating these two values to make correct local cell selections is not an easy task. We

address these critical aspects proposing a policy to update the references.

Algorithm 4.8 outlines the steps performed for one mapping round using two matches for

the positive and negative polarity. Nodes are processed in topological order, ensuring that the

arrival times and area flow of each node’s transitive fan-ins are known. For each internal node,

the algorithm extracts the best positive polarity match and the best negative polarity match

according to the current cost metric C (delay or area flow). Then, select_polarity (at line 8)

decides whether to use both matches, which would result in node duplication as demonstrated

101

Chapter 4 . Technology Mapping for Standard Cells

Algorithm 4.8: Node mapping in two polarities during delay or area flow rounds
Input: Subject graph N , Mapping M , Cuts cut s, Matching library lib, cost function C ,

estimated fan-out references r e f
Output: New mapping M ′

1 req ← compute_required(N , M , lib)
2 M ′ ← empty_mapping(N);
3 foreach Node n ∈ N in topological order do
4 if n ∈ PI (N) then
5 continue

6 select_positive_polarity(M ′, n, cut s(n), l i b, C , req, r e f)
7 select_negative_polarity(M ′, n, cut s(n), l i b, C , req, r e f)
8 select_polarity(M ′, n, req, r e f , C); ▷Utilize one or both polarities

9 C ← extract_cover(M ′)
10 return C

in Example 4.5.2, or to select only one match between the positive and the negative polarity,

implementing the other polarity using an output inverter as shown in Example 4.5.1.

Selecting to implement both matches or only one requires defining heuristic strategies,

also depending on the cost metric C . Simple cases include: (i) if a polarity has no selected

match (e.g., a match does not exist) then the other is forcefully selected; (ii) if the best match

for a polarity dominates the other, i.e., it can realize a lower-cost implementation of the other

polarity through an inverter while respecting the required times, then it is selected to replace

the other polarity. During the delay mapping round matches for both phases are normally

selected to minimize delay (as in Example 4.5.2), unless one of the previous two conditions

holds. Similarly, during the area flow rounds, if the area flow of one polarity does not dominate

the other, both are selected. However, reference estimations change every mapping round

affecting area flow values and the choice between keeping both phases or selecting one of

the two. Consequently, developing good policies to update references is crucial for area

optimization.

Among the possible policies that can be designed, we discuss two that we name collective

reference9 and distributed reference. Let us consider a node n with two fan-out estimations

f p (n) and f n(n) for the uncomplemented (positive) and complemented (negative) polarity,

respectively. If a node selects both polarities, meaning that both polarities are used in the

cover (the node is duplicated as in Example 4.5.2), f p (n) and f n(n) both reflect the fan-out of

the corresponding polarity. Specifically, the area flow of each phase for a match m at a node n

9This strategy is adopted by mapper map in ABC.

102

4.5 Improving Covering Algorithms for Technology Mapping

is computed as follows:

AF p ′
m = am +∑

(l ,φ)∈leaves(m) AFφ′(l)

f p (n)
(4.15)

AF n ′
m = am +∑

(l ,φ)∈leaves(m) AFφ′(l)

f n(n)
. (4.16)

Moreover, the estimations are updated as follows for each iteration as follows:

f p (n) j = max(α× f p (n) j−1 + (1−α)× r e f p (n),1) (4.17)

f n(n) j = max(α× f n(n) j−1 + (1−α)× r e f n(n),1), (4.18)

where r e f p (r e f n) is the actual reference in the cover for the positive (negative) polarity. Both

policies behave in the same way when a node implements selected matches for both polarities.

Differences arise when a node implements only one polarity and the other one is used through

an inverter.

The collective reference assumes that references should be summed (collected) together

when phases are shared through an inverter (see Example 4.5.1), as the match inherits fan-out

from both phases. This method uses a single collecting reference, f ⋆(n) = f p (n)+ f n(n), to

model a single match polarity usage. Consequently, area flow uses f ⋆(n) as an estimation of

the area flow contribution of the match when evaluating to use a single match:

AF ′
m = am +∑

(l ,φ)∈l eaves(m) AFφ′(l)

f ⋆(n)
(4.19)

Thus, the collective reference favors solutions that share phases if the required time allows

for it. To update the reference estimations, this approach employs Equations 4.17 and 4.18.

Conversely, the distributed reference approach maintains separate fan-out estimations,

even when the match is shared. As a result, area flow is computed as in Equations 4.15 and 4.16.

However, during cover extraction references are updated differently: the implemented phase

considers direct connections to that phase and the inverter as references, while the not

implemented phase considers only the connections to the inverter as references. Compared

to the classical method, the implemented phase includes a reference from the inverter.

Generally, collective reference tends to take more aggressive choices than the distributed

reference, aiming to implement nodes using one phase whenever the required time allows

for it. This results in a faster convergence of area flow but also performs less well in inverter

minimization (or inverter sweeping). In contrast, the distributed reference approach requires

more iterations of area flow to decide which phase to implement due to the small bias from

the inverter reference to the implemented phase. This approach tends to obtain better quality

solution. Ultimately, the best approach depends on the specific design. In our implementation,

we utilize the distributed reference method as it tends to produce designs with lower area and

103

Chapter 4 . Technology Mapping for Standard Cells

fewer inverters.

4.5.3 Alternative Matches

Technology mapping is achieved through several incremental mapping and refinement rounds.

Each round uses the previous generated cover or reference estimations to tune the heuristics

and improve the cover. As described in Section 4.2.3, reference estimations are key for a good

area recovery during area flow rounds. In this subsection, we propose a method based on

alternative matches to improve the reference estimations of area flow to achieve better area

recovery.

As mentioned in Subsection 4.2.3, during covering the actual fan-out numbers are not

known and have to be estimated. The state-of-the-art-approach estimates the fan-out refer-

ence of a node to be the one of the subject graph. When using two fan-out estimations, one

for each polarity, both are initialized to this value. Then, the following iterations estimate

the fan-out reference to be the a linear combination of the one of the previous round and

the current reference in the cover (see Equation 4.9). This approach allows for a gradual

improvement of the cover without quickly leading to a local minima after the first round of

covering. Although Equation 4.9 mitigates the dependency of the fan-out estimations from

the first rounds of covering, this dependency can decrease the quality of results when the

first round is delay-oriented. As discussed in Section 4.2.3, delay-driven or delay-constrained

technology mapping involves an initial covering round that focuses on minimizing delay.

Subsequent rounds aim to optimize the area while meeting these delay constraints. However,

the first round biases fan-out references towards a delay-oriented configuration rather than

an area-oriented one. While this approach benefits critical or near-critical paths, it leads to

sub-optimal area results for non-critical paths. To overcome this limitation, we propose to

compute alternative area-driven matches during the delay-driven round and dynamically

select them during the cover extraction phase.

The alternative matches approach works as follows. During the delay-oriented round,

matches for best delay and matches for best area flow - referred to as alternatives - are com-

puted and collected. This is equivalent to combining one round of delay-oriented match

evaluation and one round of area-oriented match evaluation, both utilizing the initial fan-out

estimations derived from the subject graph. Then, during the cover extraction phase, when

delays and required times are known, an algorithm dynamically selects which implementation

to use based on the slack.

Algorithm 4.9 shows the selection match process during cover extraction. To explain

the general idea, we illustrate the procedure for matching in one polarity. While using two

polarities involves additional considerations, the process can be addressed in a similar manner.

The inputs to the algorithm are the subject graph (N), the best delay matches (M D) and the

best area matches (M A) for each node, and the corresponding arrival times (DD and D A).

Initially, the cover is empty (line 1). Next, references and required times for each node are set

104

4.5 Improving Covering Algorithms for Technology Mapping

Algorithm 4.9: Cover extraction with alternative matches

Input: Subject graph N , Collected delay matches M D , Collected area matches M A , Arrival
times delay matches DD , Arrival times area matches D A

Output: Cover C
1 C ←;
2 foreach Node n ∈ N do
3 Re f (n) ← 0
4 R(n) ←∞
5 R ← set_output_required_time(DD)
6 foreach Node n ∈ PO(N) do
7 Re f (n) ← Re f (n)+1

8 foreach Node n ∈ N in reversed topological order do
9 if Re f (n) = 0 then

10 continue

11 Match m ←Λ

12 if D A(n) ≤ R(n) then
13 m ← M A(n)

14 else
15 m ← M D (n)

16 C ←C ∪ {m}
17 foreach Node l ∈ leaves(m) do
18 Re f (l) ← Re f (l)+1
19 R(l) ← min(R(l),R(n)−pm(l))

20 return C

to zero and infinite, respectively. At line 5, the required time for the output nodes is set based

on external constraints or the computed delays DD in the case of minimal-delay mapping.

Next, the PO nodes are referenced since they are always part of the cover. Afterwards, every

node that is a leaf of at least one match in C is processed in reverse topological order (line

8 to 19). The best area match is selected for the cover if its delay satisfies the required time.

Otherwise, the best delay match is selected. Finally, the references and the required time for

the leaves of the selected match are updated accordingly.

4.5.4 Experimental Results

In this subsection, we present experimental results on using alternative matches during

technology mapping and, generally, of our mapping covering algorithm. First, we evaluate

the usage of alternative matches in delay-driven technology mapping for best possible delay.

Then, we test mapping under delay constraints. We use the ASAP7 7nm cell library [44] as a

standard cell library. For our experiments, we use the EPFL combinational benchmark suite [3]

containing several circuits provided as and-inverter graphs (AIGs). The baseline has been

obtained by applying the area-driven balancing algorithm available in Mockturtle10 [183].

10Available at: https://github.com/lsils/mockturtle

105

https://github.com/lsils/mockturtle

Chapter 4 . Technology Mapping for Standard Cells

Table 4.6: Delay-oriented technology mapping for best delay with and without alternative
matches and a comparison against ABC map.

Benchmark Baseline ABC map Without alternatives With alternatives
Size Depth Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Time (s)

adder 1020 255 92.53 2577.43 0.13 83.59 2573.43 0.02 84.03 2573.43 0.02
bar 3336 12 325.47 168.08 0.17 353.63 168.08 0.05 356.23 168.08 0.05
div 51725 4372 5336.99 43765.09 2.95 4988.74 43765.25 1.67 4982.71 43765.25 1.63
hyp 214335 24801 16395.10 195822.72 13.53 15185.09 195345.77 7.42 14958.07 195345.77 8.07
log2 31950 410 2177.57 3955.63 3.72 1915.88 3848.17 2.33 1908.24 3848.17 2.28
max 2865 229 226.59 2213.23 0.24 209.46 2213.23 0.10 209.22 2213.23 0.11
multiplier 26953 266 1954.48 2738.95 2.01 1925.57 2667.36 0.99 1916.27 2667.36 1.03
sin 5399 186 431.22 1814.85 0.74 444.33 1760.82 0.49 446.42 1760.82 0.45
sqrt 24216 5058 1767.89 47442.32 1.70 1681.12 47438.44 0.85 1681.05 47438.44 0.81
square 18302 250 1193.12 2516.39 1.37 1104.92 2505.10 0.72 1070.08 2505.10 0.76
arbiter 11839 87 766.68 898.75 1.20 766.50 898.75 0.65 766.50 898.75 0.67
cavlc 690 16 41.57 187.04 0.10 39.58 187.04 0.02 38.80 187.04 0.01
ctrl 170 10 8.58 102.49 0.08 7.96 102.49 0.00 7.86 102.49 0.00
dec 304 3 30.83 65.72 0.12 30.83 65.72 0.05 30.83 65.72 0.04
i2c 1275 16 78.65 182.65 0.14 74.51 182.65 0.06 73.69 182.65 0.05
int2float 235 15 13.93 181.00 0.08 13.21 181.00 0.01 12.95 181.00 0.01
mem_ctrl 46820 114 2763.83 1103.42 2.32 2670.08 1100.46 1.79 2595.75 1100.46 1.90
priority 863 249 87.28 2501.95 0.12 84.20 2501.95 0.04 82.37 2501.95 0.04
router 257 27 19.59 280.01 0.10 18.89 274.05 0.02 18.57 274.05 0.02
voter 13029 71 1506.14 804.96 1.37 1546.35 749.36 1.92 1519.56 749.36 2.13

Total 32.19 19.20 20.08
Reduction 3.78% 0.92% 4.66% 0.92%

Distributed references and alternative matches have been implemented in the open-source

technology mapper emap in the logic synthesis framework Mockturtle. The experiments

use emap with Boolean matching and compare against ABC (command map), which uses

collective references. The experiments have been conducted on an Intel i5 quad-core 2GHz

on MacOS. All the results were verified using the combinational equivalent checker in ABC11.

Delay-oriented technology mapping

In this experiment, we test emap to map for minimal delay in two modes: one utilizing

alternative matches and Algorithm 4.9 during the cover extraction phase, and the other using

the standard algorithm without alternative matches. To further demonstrate the quality of the

mapped circuits found by emap, we compare its performance against the default technology

mapper in ABC (command map).

Table 4.6 presents the results, which are evaluated in terms of area reduction and delay

reduction compared to ABC. The new referencing policy and gate selection method contribute

to achieve an average area reduction of 3.78% in the default version of emap. Instead, the delay

reduction by 0.92% is mainly due to different cut prioritization heuristics. When mapping

with alternatives, the average area is further reduced by an additional 0.88%. The impact of

alternative matches varies depending on the benchmark. For instance, in the circuit square,

the area reduction peaks at 3.15% compared to the mapper without alternative matches, while

the largest area degradation is −0.74% in the circuit bar. Although the area reduction achieved

by alternative matches is modest, the primary advantage of using alternative matches becomes

evident when mapping under delay constraints, as shown in the subsequent experiment.

11Available at: https://github.com/berkeley-abc/abc

106

https://github.com/berkeley-abc/abc

4.5 Improving Covering Algorithms for Technology Mapping

Table 4.7: Delay-oriented technology mapping with and without alternative matches given a
worst-delay constraint 5% higher than the best one found by the mapper.

Benchmark Without alternatives With alternatives
Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Time (s)

adder 80.14 2699.27 0.02 80.92 2699.83 0.02
bar 278.35 176.28 0.05 245.97 176.48 0.05
div 4716.73 45822.60 1.47 4323.53 45910.42 1.62
hyp 14996.99 202567.03 6.79 14596.83 204537.44 6.67
log2 1802.42 4036.25 2.11 1780.54 4030.47 2.13
max 207.17 2323.43 0.10 202.40 2323.43 0.10
multiplier 1558.88 2799.09 0.88 1588.74 2800.08 0.89
sin 425.18 1848.58 0.41 429.03 1848.49 0.41
sqrt 1663.31 49790.13 0.72 1657.69 49806.60 0.73
square 1098.55 2588.13 0.67 1063.26 2587.45 0.68
arbiter 685.82 935.93 0.61 652.05 941.52 0.63
cavlc 37.86 195.47 0.02 37.12 195.47 0.01
ctrl 7.97 102.49 0.00 7.90 102.49 0.00
dec 28.16 68.67 0.04 28.16 68.67 0.04
i2c 74.07 191.03 0.05 73.10 190.87 0.05
int2float 12.59 190.04 0.00 12.24 189.88 0.01
mem_ctrl 2663.66 1145.53 1.65 2587.68 1153.64 1.64
priority 61.78 2551.81 0.03 60.19 2589.50 0.04
router 18.14 287.61 0.02 18.46 287.61 0.02
voter 1244.41 786.81 1.26 1252.78 786.78 1.36

Total 16.90 17.10
Reduction 2.04%

Technology mapping under delay constraints

In this experiment, we test mapping with and without alternative matches under delay con-

straints. Specifically, the delay constraints are assigned by allowing the best delay found by

emap in Table 4.6 to increase by up to 5%. This relaxation permits the mapper to increase the

delay by up to 5% when necessary to minimize the area.

Table 4.7 shows the results, which are evaluated in terms of area reduction and delay

reduction compared to mapping without alternative matches. The experiment demonstrates

that using alternative matches further reduces the area by 2.04% on average. The area re-

duction peaks at 11.63% in benchmark bar, while the largest area degradation is −1.92% in

circuit max. Although there are 5 cases out of 20 where mapping with alternative matches

performs slightly worse due to heuristic choices during covering, the experiment highlights

that alternative matches are generally an effective solution for reducing area when mapping

under delay constraints.

107

Chapter 4 . Technology Mapping for Standard Cells

4.6 Extended Mapping (emap)

In this section, we present emap, an extended technology mapping algorithm that imple-

ments the techniques discussed in this chapter to achieve better quality of results. Emap is

implemented in the open-source logic synthesis library Mockturtle [183]. Compared to other

mappers, it implements the novel methods presented in this chapter:

• Hybrid matching presented in Section 4.3

• Support of multiple-output cells presented in Section 4.4.

• Enhanced covering heuristics presented in Section 4.5.

In the experiments we show that:

• emap achieves better area and delay than the mappers in ABC when mapping for best

delay with the ASAP7 library. For instance it obtains 9.16% better area and 2.95% better

delay after technology mapping, and 9.22% better area and 2.59% better delay after

buffering and gate sizing, compared to ABC &nf.

• emap achieves 5.75% better area and 1.38% better delay than mapper &nf in ABC when

mapping for best delay with a commercial 28nm library. However, the results slightly

degrade after buffering and gate sizing with a 2.77% better area and 0.63% worse delay,

due to the poor accuracy of the gain-based delay model. Nevertheless, emap achieves

delay-area Pareto point solutions on 20 out of 21 benchmarks, while &nf in only 15 out

of 21.

• emap achieves better area than the mappers in ABC when mapping for best area with

the ASAP7 library. For instance, it obtains 15.87% better area compared to ABC map.

• emap achieves better area than the mappers in ABC when mapping for best area with a

commercial 28nm library. For instance it obtains 10.24% better area compared to ABC

map.

• emap has better run time than other mappers in ABC. However, it has also a higher

memory usage due to alternative matches, hybrid matching, and multiple-output cell

support.

4.6.1 Experimental Results

In the experimental results section, we evaluate the techniques proposed in this chapter, which

have been implemented in the command emap in Mockturtle, against the other open-source

state-of-the-art technology mappers in ABC, namely command map and command &nf -p.

The mappers share similar settings for a fair comparison. While the mappers in ABC use

108

4.6 Extended Mapping (emap)

Boolean matching, mapper emap uses hybrid matching (discussed in Section 4.3). For our

experiments, we use the EPFL combinational benchmark suite [3], containing several circuits

provided as and-inverter graphs (AIGs), and the IWLS 2005 benchmark suite [85]. The baseline

has been obtained by optimizing the benchmarks using the area-oriented AIG balancing

algorithm in Mockturtle. We employ the gain-based delay model generated by ABC. Hence,

all mappers share the same delay model and delay estimations. We perform buffering and

gate sizing using ABC with the script buffer; upsize; dnsize, and we report timing and

area after buffering and gate sizing using the static timing analysis command stime in ABC.

The experiments do not use multiple-output cells with emap since they are not supported by

the buffering and gate sizing commands in ABC. In this section, we perform the experiments

using two standard cell libraries:

• ASAP7 7.5-track standard cell library [44]: an open-source standard cell library to predict

the behavior of advanced nodes at 7nm. Besides the common library cells, it contains

large AND-OR cells, up to 9 inputs, and half and full adder cells. This library has been

pre-processed by the open-source EDA tool-chain OpenLane12 to remove unnecessary

cells, such as filler cells and clock-gating cells. Since the library is open source, the

experimental results using this library are reproducible. The adopted library with gain-

based delay model is available in the tool Mockturtle.

• A commercial 28nm standard cell library: commercial library containing various cells

up to 6 inputs and half and full adders.

Mapping for best delay using the ASAP 7nm standard cell library

In this experiment, we compare emap against the open-source mappers in ABC for minimal-

delay mapping by setting the required time to zero. We use the ASAP 7nm cell library, which

contains large cells up to 9 inputs. Hence, this library highlights the advantages of hybrid

matching against Boolean matching. In this subsection, we show the experimental results

before buffering and gate sizing in Table 4.8 and after buffering and gate sizing in Table 4.9.

Table 4.8 presents the results of our evaluations, comparing area reduction and delay

reduction after technology mapping with the ABC command map of ABC, using the gain-

based delay model of the library. The table is divided into two sections: the first section

displays results for the EPFL benchmarks, while the second section shows results for the IWLS

benchmarks. Our mapper demonstrates a significant improvement in average area, achieving

a reduction of 13.93%, and an average delay reduction of 2.13% compared to command map

of ABC. Additionally, when compared to &nf, our mapper achieves an average area reduction

of 9.61% and a delay reduction of 2.95%. Furthermore, emap has a better run time than

the mappers in ABC. These improvements are mainly attributed to the use of large gates

thanks to hybrid matching (in Section 4.3.2) and the enhanced heuristics guiding the mapping

12Available at: https://github.com/The-OpenROAD-Project/OpenLane

109

https://github.com/The-OpenROAD-Project/OpenLane

Chapter 4 . Technology Mapping for Standard Cells

Table 4.8: Delay-oriented technology mapping comparing mappers in ABC and a mapper
implementing the algorithms proposed in this chapter using the ASAP7 library.

Benchmark Baseline ABC map ABC &nf -p Our work emap
Size Depth Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Time (s)

adder 1020 84.03 92.53 2577.43 0.13 100.62 2577.43 0.19 84.03 2573.43 0.03
bar 3336 216.32 325.47 168.08 0.17 355.51 168.08 0.11 216.32 172.61 0.05
div 51725 4673.59 5336.99 43765.09 2.95 5044.47 44201.14 1.67 4673.59 43836.68 1.29
hyp 214335 15237.73 16395.1 195822.72 13.53 15539.4 196733.14 6.98 15237.73 195276.66 6.89
log2 31950 1737.34 2177.57 3955.63 3.72 2023 3941.43 4.84 1737.34 3916.17 1.44
max 2865 172.77 226.59 2213.23 0.24 224.39 2213.23 0.17 172.77 2228.59 0.08
multiplier 26953 1654.58 1954.48 2738.95 2.01 1850.21 2738.95 1.04 1654.58 2649.57 0.75
sin 5399 407.4 431.22 1814.85 0.74 435.46 1811.8 0.54 407.4 1792.56 0.27
sqrt 24216 1683.2 1767.89 47442.32 1.70 1831.71 48222.85 2.26 1683.2 47438.60 0.69
square 18302 1084.48 1193.12 2516.39 1.37 1143.31 2510.24 0.62 1084.48 2503.20 0.54
arbiter 11839 766.32 766.68 898.75 1.20 779.3 898.75 0.26 766.32 898.75 0.7
cavlc 690 37.52 41.57 187.04 0.10 39.47 187.04 0.09 37.52 186.07 0.02
ctrl 170 7.85 8.58 102.49 0.08 8.51 102.49 0.09 7.85 101.21 0
dec 304 27.44 30.83 65.72 0.12 30.29 65.72 0.11 27.44 66.15 0.02
i2c 1275 69.38 78.65 182.65 0.14 76.24 182.65 0.14 69.38 182.65 0.04
int2float 235 11.31 13.93 181 0.08 13.46 181 0.08 11.31 182.22 0.01
mem_ctrl 46820 2427.28 2763.83 1103.42 2.32 2702.08 1100.46 1.79 2427.28 1104.37 1.5
priority 863 82.25 87.28 2501.95 0.12 79.77 2501.95 0.12 82.25 2501.95 0.03
router 257 18.41 19.59 280.01 0.10 18.87 278.53 0.09 18.41 274.05 0.02
voter 13029 1538.53 1506.14 804.96 1.37 1496.84 783.85 0.46 1538.53 755.33 1.04

ac97_ctrl 14241 11 947.27 138.37 0.18 912.23 138.37 0.28 735.18 127.9 0.18
aes_core 21376 21 1655.13 260.41 0.67 1647.58 259.77 0.54 1642.25 249.71 0.6
des_area 4808 27 445.02 341.32 0.24 439.05 352.38 0.26 399.81 321.46 0.21
des_perf 80101 17 7642.30 219.48 3.33 7060.1 218.54 3.03 6829.56 197.23 3.44
DMA 24278 21 1588.15 234.47 0.98 1514.84 258.56 0.93 1315.11 230.92 0.84
DSP 45004 52 2842.72 562.36 2.3 2732.09 562.36 2.83 2414.51 534.42 1.81
ethernet 86576 27 5139.95 311.82 5.06 4838.34 302.14 5.16 3737.37 310.15 3.56
iwls05_i2c 1132 12 72.32 141.10 0.04 68.86 137.36 0.11 61.49 145.74 0.03
leon2 788859 45 78019.13 500.90 94.92 52230.6 513.74 100.18 51641.42 484.87 62.65
leon3_opt 973338 51 67090.78 529.32 130.45 55784.53 541.43 163.19 54906.4 510.13 80.28
leon3 1087244 47 70703.28 514.19 113.4 64647.32 520.81 85.22 58696.03 487.25 71.64
leon3mp 651721 47 43116.87 495.61 59.33 37401.58 511.1 57.01 37149.92 485.16 37.16
iwls05_mem_ctrl 15048 29 804.64 306.03 1.44 757.61 339.04 1.36 681.39 325.07 0.77
netcard 803417 36 50457.91 396.18 68.87 45761.73 398.9 59.02 44035.52 388.81 40.43
pci_bridge32 22705 22 1488.73 262.18 0.85 1355.34 292.43 0.86 1170.23 256.27 0.59
RISC 74651 36 4361.92 414.12 2.94 4145.32 414.12 3.42 3629.55 408.4 2.01
sasc 770 8 49.37 108.32 0.01 46.54 108.32 0.09 36.32 106.74 0.01
simple_spi 1039 10 64.97 127.66 0.02 64.05 127.66 0.10 54.08 124.01 0.02
spi 3760 31 240.29 360.00 0.17 228.54 360 0.28 216.95 346.5 0.15
ss_pcm 405 7 32.59 97.50 0 31.31 97.5 0.08 33.04 86.27 0
systemcaes 12242 44 750.50 545.99 0.32 730 543.72 0.42 597.31 493.88 0.31
systemcdes 2877 23 263.51 289.52 0.11 271.87 284.21 0.18 215.38 275.59 0.1
tv80 9461 43 602.11 469.78 0.49 597.76 467.13 0.57 549.9 463.7 0.37
usb_funct 15715 23 950.22 300.59 0.49 910.65 301.55 0.56 803.98 277.49 0.39
usb_phy 452 9 32.04 112.55 0.01 30.51 112.46 0.08 29.17 112.46 0.01
vga_lcd 126636 18 9195.92 238.60 8.3 7733.28 243.57 7.97 6476.49 250.16 6.02
wb_conmax 47520 18 2428.06 248.82 3.19 2242.56 261.53 3.31 2139.92 235.33 2.11

Total 530.3 518.69 331.1
Reduction 4.58% -0.91% 13.93% 2.13%

process (in Section 4.2.3). For instance, when emap uses Boolean matching instead of hybrid

matching, it achieves an average area reduction of 7.82% and an average delay reduction of

1.81% compared to ABC map.

Table 4.9 presents the results for the IWLS 2005 benchmarks with less than 100K gates after

technology mapping, buffering, and gate sizing. We compare emap against the ABC command

&nf using the technology mapping results from Table 4.8. After technology mapping under

the gain-based delay model, we perform buffering and gate sizing with ABC. After gate sizing,

our mapper achieves an average area and delay reduction by 9.22% and 2.59%, respectively,

compared to the mapper in ABC. Hence, the improvement shown in Table 4.8 is preserved

under a more precise delay model (that uses NLDM).

110

4.6 Extended Mapping (emap)

Table 4.9: Comparing our technology mapper emap against ABC &nf after performance-driven
buffering and gate sizing using the ASAP7 library.

Benchmark Baseline ABC nf -p Our work emap
Size Depth Area (µm2) Delay (ps) Area (µm2) Delay (ps)

ac97_ctrl 14241 11 947.86 126.61 785.69 117.96
aes_core 21376 21 1674.44 273.42 1697.16 252.39
des_area 4808 27 470.15 372.71 433.14 353.17
des_perf 80101 17 7213.21 237.51 7156.42 232.15
DMA 24278 21 1581.92 271.38 1394.36 249.12
DSP 45004 52 2813.2 577.41 2529.13 556.61
ethernet 86576 27 5164.59 335.3 4219.71 354.08
iwls05_i2c 1132 12 69.34 160.69 62.52 162.4
iwls05_mem_ctrl 15048 29 790.94 356.72 721.45 344.57
pci_bridge32 22705 22 1421.13 294.12 1278.46 296.03
RISC 74651 36 4298.5 404.78 3838.19 417.24
sasc 770 8 46.9 101.19 37.69 109.13
simple_spi 1039 10 64.97 134.48 55.94 131.12
spi 3760 31 241.09 322.71 229.46 327.47
ss_pcm 405 7 32.75 90.55 35.87 65.24
systemcaes 12242 44 770.63 508.21 641.51 474.88
systemcdes 2877 23 283.16 303.6 228.79 308.51
tv80 9461 43 619.61 509.44 575.3 483.14
usb_funct 15715 23 926.56 277.43 823.67 283.81
usb_phy 452 9 30.47 90.78 29.48 92.9
wb_conmax 47520 18 2360.05 279.26 2281.22 276.46

Reduction 9.22% 2.59%

Mapping for best delay using a commercial 28nm standard cell library

Similarly to the previous experiment, we compare emap against ABC &nf for delay-driven tech-

nology mapping. We employ a commercial 28nm standard cell library for these experiments.

First, we perform mapping under the gain-based delay model, then we perform buffering and

gate sizing using ABC. This experiment uses IWLS 2005 benchmarks containing less than 100K

nodes. Since the standard cell library does not contain cells with more than 6-inputs hybrid

matching performs similarly to Boolean matching.

Table 4.10 shows the experimental results, comparing area reduction and delay reduction

after technology mapping, and after buffering and gate sizing. The columns labeled “TM”

present the results after technology mapping, while the columns labeled “SN” present the

results reported by static timing analysis after buffering and gate sizing. Our mapper achieves

5.75% better average area and 1.38% better delay after technology mapping compared to

ABC. After sizing, the area improvement over ABC is reduced to 2.77%, and there is a minor

delay degradation of 0.63%. The primary reason for this discrepancy, compared to Table 4.9,

is the low accuracy of the gain-based delay model with respect to the static timing analysis

results. The sizer fails to meet the effort delay in nearly every benchmark for both &nf and

emap. As a result, emap is slightly penalized because it tends to share more logic to achieve

111

Chapter 4 . Technology Mapping for Standard Cells

Table 4.10: Comparing our technology mapper emap against ABC &nf before and after
performance-driven buffering and gate sizing using a 28nm commercial library.

Benchmark Baseline ABC nf -p Our work emap
Size Depth Area TM (µm2) Delay TM (ps) Area SN (µm2) Delay SN (ps) Area TM (µm2) Delay TM (ps) Area SN (µm2) Delay SN (ps)

ac97_ctrl 14241 11 4255.32 58.27 4603.54 86.05 3902.05 58.27 4367.92 88.00
aes_core 21376 21 8781.12 107.27 10100.92 169.98 8795.96 107.27 10244.30 169.92
des_area 4808 27 1956.05 146.78 2498.58 243.03 1868.93 141.09 2357.21 246.74
des_perf 80101 17 34735.35 88.45 38872.01 166.38 35915.25 88.45 38430.50 195.86
DMA 24278 21 7402.01 107.89 8037.67 186.97 7103.5 101.68 7876.76 176.07
DSP 45004 52 13817.81 246.79 14924.83 378.61 12685.95 241.17 14578.07 369.52
ethernet 86576 27 23899.69 123.14 25703.62 190.85 20419.45 123.14 22862.57 196.56
iwls05_i2c 1132 12 345.95 61.66 392.74 82.33 321.38 61.66 378.00 83.48
iwls05_mem_ctrl 15048 29 4071.39 143.87 4551.37 213.44 3838.7 132.83 4395.76 218.71
pci_bridge32 22705 22 6620.36 117 7283.43 176.15 6267.65 112.96 7066.71 181.53
RISC 74651 36 21036.62 173.98 22300.24 292.43 19603.18 176.62 21418.24 274.66
sasc 770 8 244.23 44.93 295.97 57.96 222.46 44.93 291.44 54.92
simple_spi 1039 10 310.71 55.86 351.92 73.25 284.28 55.86 349.40 69.78
spi 3760 31 1168.6 151 1360.67 225.52 1104.65 150.92 1293.89 237.17
ss_pcm 405 7 139.63 37.86 176.02 60.01 140.94 37.86 193.91 50.19
systemcaes 12242 44 3684.48 227.84 4170.10 299.46 3221.1 213.41 3703.90 325.93
systemcdes 2877 23 1280.54 125.73 1513.26 203.44 1255.43 120.78 1543.88 209.73
tv80 9461 43 3012.04 201.21 3481.76 308.55 2729.71 202.68 3213.50 307.72
usb_funct 15715 23 4541.27 126.57 4745.54 204.59 4280.98 126.78 4567.75 205.20
usb_phy 452 9 151.48 48.12 185.98 51.50 144.72 48.12 189.38 51.06
wb_conmax 47520 18 11957.33 107.21 13002.19 184.52 11501.42 109.29 12682.78 195.85

Reduction 5.75% 1.38% 2.77% -0.63%

better area, leading to circuits with smaller areas but more inverters, which complicates the

sizing phase. This complication may result in a slight degradation in delay due to the failure

to balance the paths for more nodes, and an increase in area due to the need for larger gate

sizes to compensate for delay imbalances. Nevertheless, emap still achieves better area, and

the difference in delay is small and can be recovered with post-mapping re-synthesis over the

critical paths.

Additionally, emap finds delay-area Pareto point results in 20 out of 21 benchmarks, being

dominated in both area and delay in only one case. Conversely, ABC finds delay-area Pareto

points in 15 out of 21 benchmarks, being dominated in both area and delay by emap in six

cases. This shows that the two mappers explore different solutions within the design space.

Mapping for best area using the ASAP 7nm standard cell library

Similarly to Table 4.8, in this experiment we compare emap against the mappers in ABC for

the EPFL and IWLS 2005 benchmarks using the ASAP7 standard cell library. However, this

experiment is carried out using a large timing constraint of 11 times the minimal one to test

the area minimization algorithms of the different mappers.

Table 4.11 shows the experimental results. Our mapper achieves the best area in almost

every benchmark with a 15.87% improvement compared to map and 16.51% compared to &nf,

while obtaining better run time. Additionally, we also report the delay results for each mapper.

Mapping for best area using an industrial 28nm standard cell library

Similarly to Table 4.11, in this experiment we compare emap against the mappers in ABC for

the EPFL and IWLS 2005 benchmarks for area-oriented mapping. However, this experiment

112

4.7 Summary

Table 4.11: Area-oriented technology mapping comparing mappers in ABC and a mapper
implementing the algorithms proposed in this chapter using the ASAP7 library.

Benchmark Baseline ABC map -a ABC &nf -p -R 1000 Our work emap -a
Size Depth Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Time (s)

adder 1020 84.03 57.40 3548.84 0.13 100.62 2577.43 0.15 57.40 3548.84 0.02
bar 3336 216.32 191.81 238.53 0.18 159.64 211.47 0.12 128.74 199.39 0.05
div 51725 4673.59 3427.10 66322.78 2.55 5044.47 44201.14 1.49 3079.58 53745.74 1.13
hyp 214335 15237.73 14378.94 300243.28 11.83 15539.40 196733.14 7.29 13167.04 272523.78 6.21
log2 31950 1737.34 1643.99 6734.09 3.42 2023.00 3941.43 4.78 1501.99 5409.33 1.55
max 2865 172.77 166.18 2862.23 0.26 224.39 2213.23 0.15 139.06 2952.58 0.19
multiplier 26953 1654.58 1495.54 4961.61 1.84 1850.21 2738.95 0.95 1284.50 3448.00 1.09
sin 5399 407.4 309.11 3056.93 0.68 298.91 2820.36 0.88 270.05 2782.29 0.36
sqrt 24216 1683.2 1461.52 106239.08 1.45 1831.71 48222.85 2.24 1336.59 102003.83 0.83
square 18302 1084.48 1168.02 3711.58 1.35 1143.31 2510.24 0.66 1048.11 3508.29 0.57
arbiter 11839 766.32 569.40 1018.69 1.34 566.69 1018.69 0.97 557.72 999.87 1.04
cavlc 690 37.52 39.01 221.56 0.09 37.73 217.37 0.10 34.13 263.16 0.02
ctrl 170 7.85 8.07 131.57 0.08 8.35 133.32 0.09 7.20 127.51 0.00
dec 304 27.44 27.50 85.83 0.12 27.38 85.83 0.14 27.06 86.33 0.03
i2c 1275 69.38 77.90 214.29 0.14 74.87 233.04 0.15 67.16 267.86 0.04
int2float 235 11.31 13.00 205.02 0.09 12.92 209.05 0.09 11.04 197.60 0.01
mem_ctrl 46820 2427.28 2673.88 1799.50 2.33 2624.15 1778.17 1.90 2278.47 1706.20 1.66
priority 863 82.25 62.56 2795.01 0.12 79.77 2501.95 0.11 51.17 2918.99 0.03
router 257 18.41 15.01 448.06 0.10 13.16 397.66 0.12 12.96 400.89 0.04
voter 13029 1538.53 851.87 1297.25 1.02 834.67 1128.34 0.64 802.13 1185.61 0.93

ac97_ctrl 14241 11 843.50 200.11 0.42 814.65 203.37 0.30 651.48 189.23 0.18
aes_core 21376 21 1247.41 385.16 1.24 1239.28 401.15 0.96 1098.21 368.51 0.95
des_area 4808 27 263.19 537.25 0.48 247.69 512.26 0.48 230.67 491.67 0.28
des_perf 80101 17 5465.26 345.29 6.00 5328.04 331.43 5.67 4639.28 319.74 3.65
DMA 24278 21 1395.02 434.69 1.42 1321.40 408.02 1.32 1103.13 355.39 0.94
DSP 45004 52 2598.94 977.43 3.20 2468.64 919.30 3.54 2114.64 938.35 1.82
ethernet 86576 27 5124.71 565.67 6.21 4818.10 476.60 5.84 3720.73 492.35 3.56
iwls05_i2c 1132 12 68.07 251.97 0.12 65.30 232.61 0.11 57.82 247.68 0.04
leon2 788859 45 53556.03 820.28 106.44 51439.15 776.81 120.68 41732.05 754.24 90.91
leon3_opt 973338 51 57367.05 906.88 123.57 55515.76 867.16 157.00 48307.89 789.17 85.85
leon3 1087244 47 66424.74 869.10 125.82 63118.07 834.30 129.35 51309.65 745.15 87.16
leon3mp 651721 47 39221.58 927.04 67.03 36829.42 877.81 63.50 30191.65 806.49 44.63
iwls05_mem_ctrl 15048 29 772.76 571.96 1.49 732.12 534.52 1.74 644.41 550.57 1.02
netcard 803417 36 48046.33 608.63 75.74 45229.71 635.83 78.75 34460.36 588.33 58.48
pci_bridge32 22705 22 1406.23 474.02 1.28 1322.72 467.52 1.01 1121.24 385.79 0.63
RISC 74651 36 4247.88 765.35 3.92 4036.42 684.59 3.53 3533.69 668.20 2.01
sasc 770 8 48.03 148.58 0.10 45.75 151.43 0.09 35.48 140.61 0.01
simple_spi 1039 10 62.25 192.83 0.10 60.05 175.63 0.11 48.55 203.07 0.02
spi 3760 31 216.03 533.14 0.33 207.97 522.13 0.32 180.45 465.15 0.13
ss_pcm 405 7 28.23 143.90 0.08 27.49 148.33 0.08 22.34 128.21 0.00
systemcaes 12242 44 726.39 860.58 0.65 694.64 770.41 0.46 558.74 769.85 0.28
systemcdes 2877 23 185.60 468.71 0.26 179.82 428.12 0.26 150.86 435.87 0.12
tv80 9461 43 545.34 832.24 0.74 519.43 831.59 0.77 460.87 770.59 0.38
usb_funct 15715 23 924.28 452.48 0.78 891.83 445.49 0.64 781.38 398.10 0.41
usb_phy 452 9 30.49 171.61 0.09 29.57 144.43 0.08 27.00 157.39 0.01
vga_lcd 126636 18 8092.58 361.80 11.53 7516.49 377.67 10.43 6069.10 342.92 7.00
wb_conmax 47520 18 2361.62 369.91 4.15 2220.53 348.03 3.54 2096.30 329.90 2.23

Total 572.31 613.58 408.50
Reduction -2.17% 9.61% 15.87% 6.99%

uses a commercial 28nm standard cell library, which mitigates the advantages of hybrid

matching since it contains cells up to 6 inputs.

Table 4.12 shows the experimental results. Also in this experiment our mapper largely

achieve the best area in almost every benchmark with a 10.24% improvement compared to

map and 8.16% compared to &nf, while obtaining better run time. Additionally, we also report

the delay results for each mapper.

4.7 Summary

In this chapter, we proposed methods to overcome the limitations of current state-of-the-art

technology mappers for standard-cell-based design. Fist, we introduced a novel matching

113

Chapter 4 . Technology Mapping for Standard Cells

Table 4.12: Area-oriented technology mapping comparing mappers in ABC and a mapper
implementing the algorithms proposed in this chapter using a 28nm commercial library.

Benchmark Baseline ABC map -a ABC &nf -p -R 1000 Our work emap -a
Size Depth Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Time (s) Area (µm2) Delay (ps) Time (s)

adder 1020 84.03 375.87 2284.33 0.1 366.06 2029.36 0.1 337.55 2560.36 0.02
bar 3336 216.32 856.08 114.82 0.2 828.3 116.29 0.2 760.61 125.36 0.07
div 51725 4673.59 17624.05 35829.66 2.74 21763.22 19201.46 18.71 15834.6 23840.95 1.23
hyp 214335 15237.73 76654.84 151990.69 15.27 94276.13 89353.77 18.15 66647.15 167634.52 7.22
log2 31950 1737.34 9157.06 2989.39 3.03 8904.6 2797.39 137.42 8440.25 2805.58 1.51
max 2865 172.77 844 1325.56 0.27 796.51 1546.34 0.29 773.05 1551.2 0.25
multiplier 26953 1654.58 7756.58 1994.23 2.13 7589.57 1970.18 6 6942.06 1938.19 0.95
sin 5399 407.4 1722.94 1432.1 0.59 1642.97 1412.49 2.96 1494.39 1362.79 0.29
sqrt 24216 1683.2 7339.48 31852.83 1.6 10576.89 21948.81 1.01 6966.77 41640.97 0.81
square 18302 1084.48 6350.65 1907.74 1.46 6024.63 2268.19 3.94 5443.06 2187.8 0.65
arbiter 11839 766.32 3146.76 399.02 1.41 3212.76 398.66 1.45 3135.79 398.95 1.87
cavlc 690 37.52 204.02 111.46 0.1 191.31 119.51 0.11 183.57 122.78 0.02
ctrl 170 7.85 41.88 60.42 0.08 41.26 66.14 0.09 38.45 65.29 0
dec 304 27.44 117.46 29.21 0.1 116.9 30.98 0.13 116.9 30.98 0.03
i2c 1275 69.38 393.04 103.58 0.13 377.5 108.38 0.13 355.9 103.76 0.04
int2float 235 11.31 67.48 86.84 0.08 64.86 103.44 0.1 61.06 92.23 0.01
mem_ctrl 46820 2427.28 13515.31 854.09 2.19 13187.28 938.18 2.09 11901.52 935.74 1.67
priority 863 82.25 298.52 1132.28 0.1 275.81 1499.92 0.11 258.7 1614.15 0.03
router 257 18.41 84.03 175.34 0.09 80.49 238.54 0.09 76.85 194.27 0.02
voter 13029 1538.53 4110.95 578.31 1.02 4029.04 616.14 5.84 3868.29 645.91 0.6

ac97_ctrl 14241 11 4087.06 83.8 0.47 3930.97 104.02 0.33 3672.19 99.86 0.23
aes_core 21376 21 6434.22 178.01 1.09 6280.62 191.4 0.87 5924.81 172.71 0.95
des_area 4808 27 1362.16 244.22 0.63 1296.5 237.05 0.36 1251.99 223.18 0.3
des_perf 80101 17 27852.02 156.79 5.6 27091.65 157.84 4.67 24641.65 154.73 4.43
DMA 24278 21 6749.92 170.05 1.32 6576.28 192.92 1.13 6049.54 179.49 0.79
DSP 45004 52 12847.23 474.54 2.81 12270.53 459.88 2.9 11373.52 433.21 1.73
ethernet 86576 27 24216.97 193.45 4.08 23778.47 235.17 3.02 20299.31 221.09 2.99
iwls05_i2c 1132 12 349.02 88.2 0.11 331.7 100.69 0.12 313.56 92.54 0.04
leon2 788859 45 271761.88 353.69 52.42 262458.59 357.5 85.61 246587.02 354.86 56.55
leon3_opt 973338 51 275260.66 361.19 66.58 263908.06 401.34 64.06 248699.8 369.91 68.61
leon3 1087244 47 315741.41 350.78 68.63 299940.06 385.99 69.8 286991.09 357.78 69.26
leon3mp 651721 47 187435.73 366 39.06 178476.89 395.38 39.65 170576.23 389.75 34.3
iwls05_mem_ctrl 15048 29 4090.16 215.3 0.97 3926.52 236.88 1.16 3678.84 214.65 0.97
netcard 803417 36 221703.8 270.64 46.1 213137.97 288.62 37.66 193249.52 290.26 36.26
pci_bridge32 22705 22 6555 171.58 1.21 6300.16 182.46 0.91 5758.37 176.96 0.6
RISC 74651 36 21513.6 284.33 3.7 20377.79 337.15 2.79 19039.07 320.35 2.17
sasc 770 8 229.08 59.16 0.09 226.09 73.95 0.09 202.89 63.44 0.01
simple_spi 1039 10 305.55 75.53 0.1 293.83 85.42 0.11 272 82.72 0.02
spi 3760 31 1080.05 228.7 0.29 1055.59 260.35 0.3 988.09 237.36 0.14
ss_pcm 405 7 136.12 49.8 0.08 121.58 69.15 0.09 111.2 61.4 0
systemcaes 12242 44 3653.4 356.33 0.63 3360.44 358.42 0.75 3018.73 367.3 0.34
systemcdes 2877 23 918.75 189.05 0.28 864.82 216.34 0.27 805.23 203 0.12
tv80 9461 43 2750.88 369.34 0.65 2615.18 367.78 0.7 2430.16 394.56 0.41
usb_funct 15715 23 4681.08 189.08 0.71 4451.22 225.73 0.56 4190.76 191.83 0.41
usb_phy 452 9 154.86 61.38 0.09 146.94 71.99 0.1 141.52 79.65 0.01
vga_lcd 126636 18 36607.27 141.52 7.11 34983.64 149.69 5.29 31371.96 145.47 4.72
wb_conmax 47520 18 12107.7 158.31 3.11 11804.37 171.31 3.18 11345.1 167.73 2.16

Total 340.61 525.40 305.81
Reduction 1.74% -7.08% 10.24% -6.58%

method that combines pattern and Boolean matching. Its main advantage is to enhance the

performance of Boolean matching enabling the use of large library cells, such as multiple-

input AND-ORs. Experimental results have shown a significant decrease of the average area

by 6.5% for similar delay. Second, we focused on increasing the support of multiple-output

cells in technology mapping. We proposed algorithms to tackle the structural multiple-output

cell detection problem and multiple-output cell covering, building the first open-source map-

per with this kind of support. We demonstrated that multiple-output cells can be efficiently

detected and mapped, with a 7.48% area decrease when mapping for minimal delay. Addi-

tionally, our approach reduces the area of approaches that separate the multiple-output cell

mapping from single-output cell mapping by a remarkable 5%. Third, we discussed methods

to improve area-oriented covering algorithm of technology mapping, showing a 4.66% average

improvement compared to ABC command map.

114

4.7 Summary

In the last part of the chapter, we presented the technology mapper emap, which enhances

the state-of-the-art algorithms for technology mapping [38] using the methods proposed

in this chapter. When using the ASAP 7nm library, compared to the mappers in ABC, we

showed a reduction in area by 9.16% and in delay by 2.95% before buffering and gate sizing.

After buffering and gate sizing, the results maintain a 9.22% better area and 2.59% better

delay. When using the commercial 28nm library without large cells, emap achieves 5.75%

better area and 1.38% better delay. However, the results slightly degrade after buffering and

gate sizing with a 2.77% better area and 0.63% worse delay. Nevertheless, emap achieves

delay-area Pareto point solutions on 20 out of 21 benchmarks, while ABC &nf in only 15 out of

21. Additionally, emap achieves large reductions (> 8%) in area-oriented mapping for both

standard cell libraries compared to the mappers in ABC, showing the effectiveness of the

algorithms proposed in this chapter.

115

5 Mapping for Logic Synthesis

Chapter 3 and 4 were dedicated to technology mapping algorithms for field-programmable

gate arrays (FPGAs) and standard-cell-based design. In this chapter, we study how approaches

similar to technology mapping and innovations in logic rewriting can enhance technology-

independent logic synthesis. Specifically, this chapter presents: (i) a versatile mapping ap-

proach for graph mapping and logic rewriting of technology-independent graph representa-

tions; (ii) algorithms to leverage don’t care conditions in graph mapping and logic rewriting;

(iii) efficient methods to optimize the factored form literal count in multi-level Boolean net-

works, with applications in standard-cell-based design flows and transistor-level synthesis.

The content of this chapter is largely based on the publications in [196, 200, 201, 202].

The remainder of this chapter is organized as follows. First, we present the motivations

of this chapter in Section 5.1. Next, Section 5.2 proposes a versatile mapping algorithm for

graph mapping and logic rewriting of technology-independent graph representations. This

approach can efficiently map into different graph data structures while optimizing them and

can perform logic rewriting with a global view. The experimental results show that versa-

tile mapper can map and-inverter graphs (AIGs) to majority-inverter graphs (MIG), xor-and

graphs (XAGs), and xor-majority graphs (XMGs) and reduce the number of gates by 32.11%,

27.58%, 43.17%, respectively. Additionally, we show that mapping based rewriting performs

better than previous state-of-the-art methods. Then, Section 5.3 presents algorithms to effi-

ciently leverage Boolean don’t care conditions during graph mapping and logic rewriting. The

experimental results show that an MIG flow implementing don’t care-based logic rewriting

reduces the number of gates by 4.31% compared to the state-of-the-art flow. Moreover, we

show that this method contributes to obtain the best-known results in MIG size for the EPFL

benchmarks. Next, Section 5.4 proposes modern algorithms to optimize the factored form

literal count (FFLC) in multi-level Boolean networks. This is motivated by the correlation

between factored form literals and the number of transistors in the CMOS implementation.

We propose a portfolio of methods that includes mapping, rewriting, resubstitution, and

refactoring for FFLC. We show that these methods help reduce the area of standard-cell-based

designs by 2.8%, on average, compared to the state-of-the-art AIG synthesis flow. Moreover,

117

Chapter 5 . Mapping for Logic Synthesis

we discuss applications in transistor-level synthesis and auto-creation of standard cells. Fi-

nally, Section 5.5 concludes and summarizes this chapter, highlighting the key findings and

contributions.

5.1 Motivation

The performance of modern integrated circuits is largely affected by the capabilities of logic

synthesis tools. Traditionally, Boolean networks have been represented using networks of

sum-of-products (SOPs) or and-inverter graphs (AIGs). However, over the last decade, several

other logic representations have been proposed to enhance the quality of synthesis tools.

Hence, modern logic synthesis should become more versatile by supporting multiple logic

representation, different cost function, and applications.

Originally, logic synthesis utilized 2-input NANDs and NORs, together with inverters, as

primitives in graph representations thanks to their universality. Then, the number of literals in

the factored forms became the standard metric for area in technology-independent synthesis,

leading to the development of many optimization methods for this metric [28]. Consequently,

circuits were modeled as logic networks where nodes are represented in SOP form. Although

SOPs and factored forms are not unique, heuristics were developed to compute a good fac-

torization and the literal count. As logic synthesis evolved and integrated circuits became

larger and more complex, scalability emerged as a crucial issue. This led to the adoption of

and-inverter graphs (AIGs) [75, 97], consisting of 2-input AND gates and inverters, as the most

common technology-independent representation. The simplicity of AIGs allowed for efficient

representation and the development of scalable and effective optimization algorithms [132].

With the transition to AIGs, the cost metric shifted from the number of factored form literals

to the number of AIG nodes and the AIG logic depth. In addition to AIGs, majority-inverter

graphs (MIGs) [5, 6], consisting of 3-input majority gates and inverters, have been proposed as

an alternative representation. MIGs were motivated by a more expressive potential and by

many majority-based emerging technologies, e.g., spin-wave devices [91], quantum-dot cellu-

lar automata [116], and adiabatic quantum-flux parametron [191]. Optimization algorithms

based on majority Boolean algebra have been developed for MIGs, leading to significant delay

reductions in arithmetic-intensive designs, even for conventional technologies.

This development has sparked further research into other logic representations for ap-

plications in logic synthesis. For instance, xor-and graphs (XAGs) [72] and xor-majority

graphs (XMGs) [68] have been proposed for their compactness in arithmetic circuits and

as a basis for logic rewriting. Additionally, XAGs have been used in design flows for FPGAs,

security applications (see, e.g., [27]), cryptography applications (see, e.g., [205, 219]), and

quantum computing (see, e.g., [130]). Recent work has also investigated 3-input gates as new

graph representations to address logic synthesis [127]. The proliferation of various graph

representations has motivated the development of versatile logic synthesis tools that support

optimization across multiple representations. A notable example is the logic synthesis toolbox

118

5.1 Motivation

introduced in [169], which facilitates optimization over a range of graph-based representa-

tions.

Since different graph representations and cost functions unique to different applications

are available to support logic synthesis, in Section 5.2 we present a versatile mapping technique

to map from a graph representation to another and to perform global Boolean rewriting. This

approach is referred to as graph mapping. Graph mapping performs mapping using a database

of optimum graph structures obtained with exact synthesis. One of its main advantages is its

versatility since its target graph representation depends on a database. Our research on graph

mapping produced remarkable results in obtaining compact MIGs, XAGs, and XMGs, and has

been adopted in multiple state-of-the-art flows and projects for these representations [20, 104,

107, 109, 110, 129, 164, 194].

In Section 5.3, we extend versatile graph mapping and Boolean rewriting to leverage

additional degrees of freedom in optimization given by don’t care conditions. Don’t cares in

logic synthesis are typically leveraged by Boolean resubstitution. However, resubstitution is

based on sophisticated resynthesis heuristics, which can be hard to design and, consequently,

sub-optimal in many non-conventional data structures, including MIGs. Conversely, Boolean

rewriting can be a viable solution for exploiting don’t care conditions with local optimality

guarantees, but this is possible only when exact synthesis is used to compute optimum

replacement on the fly [167]. However, exact synthesis is computationally expensive, making

it impractical in industrial tools and common design workflows. For this reason, optimum

structures are typically pre-computed and stored in a database, commonly limited to four

inputs, but this method does not support the use of don’t cares. We address this limitation by

proposing a technique to enable the usage of don’t cares in graph mapping and logic rewriting

with pre-computed databases. We demonstrate how to process the database and perform

Boolean matching with Boolean don’t cares, with negligible run time overhead. Moreover, we

show that this method contributes to obtaining the best-known results in MIG size for the

EPFL benchmarks.

As modern logic synthesis has moved to using AIGs as a scalable and efficient logic rep-

resentation, the cost metric transitioned from the number of factored form literals to the

number of AIG nodes. However, the factored form literal count (FFLC) remains significant

because it correlates strongly with the number of transistors needed to implement a Boolean

function in CMOS technology. Consequently, FFLC optimization is a powerful tool for a fully

custom design flow, optimizing logic for transistor-level mapping, which inherently produces

complex custom standard cells. Surprisingly, the connection between factored form literal op-

timization and AIG optimization has not been extensively studied. Moreover, traditional FFLC

optimization methods are restricted to small Boolean functions only, motivating research

into scalable FFLC optimization methods that can be applied at the logic-network level. In

Section 5.4, we study the connection between AIG optimization and FFLC optimization and

propose a new scalable framework for FFLC optimization. We show how to perform FFLC

optimization directly over an AIG without converting AIGs into logic networks, as required by

119

Chapter 5 . Mapping for Logic Synthesis

traditional FFLC minimization techniques. Additionally, we present a portfolio of AIG-based

optimization techniques enhanced for FFLC optimization. This is the first approach to address

FFLC optimization at the global network level. We demonstrate that AIG-based FFLC opti-

mization can improve the design flow for standard cells. Furthermore, we discuss applications

in transistor-level synthesis and custom standard-cell creation. These latter applications are

further addressed in the patents [203, 213].

5.2 Versatile Graph Mapping

In this work, we present a mapping approach, called graph mapping, that supports mapping

from and to different graph data representations, such as AIG, XAG, MIG, and XMG. Informally,

graph mapping performs technology-independent mapping. Additionally, it can perform

global logic restructuring. Its versatility finds extensive applications in different technologies.

For instance, the Adiabatic Quantum Flux Parametron (AQFP) [33, 129] superconducting

technology, and quantum-dot cellular automata [94] are inherently majority-based. Our tool

provides an efficient rewriting to MIGs that is crucial for specialized tools such as [204] for

AQFP design. Re-configurable nano-technologies (RFET) make use of XMGs as an efficient

representation to preserve self-duality [164]. In cryptography and security applications, XAGs

are used to represent circuits and analyze the multiplicative complexity of Boolean functions

which correlates with vulnerability against algebraic attacks [27]. Furthermore, additional

applications are possible for logic optimization (e.g., logic rewriting), especially in arithmetic-

intensive circuits. Since publicly available logic synthesis tools mostly rely on AIGs for logic

optimization [30], this mapper provides a way to easily obtain a representation that is more

suitable for a particular application while optimizing it. Additionally, we present technical

improvements over previous logic restructuring methods on logic sharing and global view.

In the experiment, we evaluate the versatility and quality of graph mapping and compare

it to state-of-the-art methods:

• We evaluate graph mapping for logic restructuring on MIGs. We test our solutions to

improve logic sharing and optimize with a global view by comparing to previous state-

of-the-art LUT-based rewriting and cut rewriting. Our mapper improves the average

size by 9.45% and 20.64% respectively obtaining considerably better results for all the

benchmarks.

• We evaluate mapping from AIGs into XAGs and XMGs. We improve previous work on

XMG size optimization using LUT-based rewriting in [43, 68] by 12.22% in geometric

mean and 27.45% in size-depth product.

In summary, graph mapping is the first tool to enable graph mapping and restructuring

among various graph-based representations.

120

5.2 Versatile Graph Mapping

a b c d

p

r s

∧

∧ ∧

(a) Initial network

a b c d

r s

a ∧b ∧ c b ∧ c ∧d

(b) LUT mapping

a b c d

r s

∧

∧

∧

∧

(c) LUT decomposition with exact synthesis

Figure 5.1: Logic sharing limitation in LUT-based rewriting

5.2.1 Related Work on Graph Mapping

LUT mapping [45] is a special case of technology mapping which covers a network using

LUTs. State-of-the-art technology-independent mapping, here named graph mapping, relies

on LUT mapping followed by a k-LUT decomposition using exact synthesis to obtain the

target graph representation [70]. We refer to this method as LUT-based mapping. LUT-based

mapping is often used for graph mapping and logic rewriting by iteratively remapping the

circuit. Previous work implemented optimization flows that used LUT mapping and exact

k-LUT decomposition on MIGs [70] and XMGs [68]. LUT-based mapping suffers from a

limitation that decreases the quality of results. LUT mapping aims at mapping a network by

minimizing the number of LUTs or LUT levels. By preferring larger LUTs to cover more logic,

the logic sharing of the original network is often lost. Hence, when the LUTs are decomposed

using exact synthesis, more nodes than necessary are added to the network.

Example 5.2.1. In Figure 5.1a, an AIG network contains a shared node p. When the network

is mapped to a 3-LUT network for size reduction, the network obtains the configuration in

Figure 5.1b using the minimum number of two LUTs to cover the network. This operation loses

the local information of the shared node p. When the LUTs are decomposed back to an AIG

using exact synthesis, shown in Figure 5.1c, the two LUTs are matched to the same structure

which creates an additional node with respect to the original network. To describe structurally

the logic sharing, a better mapping would use one 2-LUT for each node of Figure 5.1a. ▲

To restructure a circuit, another method is also available in the literature. Rewriting [137,

167] is a DAG-aware optimization method that aims at minimizing the size of a representation

by replacing small parts of the network with smaller structures. The DAG-aware property

makes it able to re-use existing logic and leverage structural hashing [139]. The logic structures

121

Chapter 5 . Mapping for Logic Synthesis

a b c d e

p r

s

t

∧ ∧ ∧

∧∧

∧

∧

(a) Initial network

a b c d e

p r

s

t

∧ ∧

∧∧

∧

∧

(b) AIG rewriting in [167]

a b c d e

s

t

∧ ∧

∧

∧

(c) Best structure with a global view

Figure 5.2: Local view limitation in cut rewriting

are typically contained in a database or are computed on the fly. We analyze the DAG-aware

cut rewriting approach described in [167] that can be used for graph mapping. The algorithm

greedily collects the best local replacements over the whole graph, saving for each node the

one with the best node reduction. Then, a cover using the best replacements is extracted in

reverse topological order. However, local decisions create conflicts (e.g., two replacements

cannot happen at the same time). The algorithm lacks of a global view to extract the best

replacements globally.

Example 5.2.2. Figure 5.2a shows the initial AIG network in which dashed lines represent

negations. By rewriting the network using 4-feasible cuts, the best structure is obtained by

replacing the cut with leaves {b,c,d ,e} rooted in s. The usage of this replacement depends on the

replacement at the PO node t . In Figure 5.2b, cut rewriting heuristic selects the cut with leaves

{a, p,r } at root t since it has a greater or equal local gain compared to the other candidates at t .

Consequently, the best replacement at s cannot be used since s is already included in the chosen

cut at t (i.e., s is not a leaf of a cut during covering). Cut rewriting replaces the sub-graphs

rooted in p and r , thus leading to a size improvement of a single node. The optimal outcome,

in Figure 5.2c, can be achieved by evaluating the conflicts globally. Alternatively, cut rewriting

would need to be executed a second time to achieve this optimization. However, in large designs,

cut rewriting tends to get stuck in local minima due to the lack of a global view. ▲

122

5.2 Versatile Graph Mapping

5.2.2 Versatile Mapping

In this section, we describe our contribution. We present a versatile graph mapper that can

map a generic technology-independent representation (e.g., AIG, XAG, MIG) into another

while performing optimization. It uses a database of pre-computed optimum structures (e.g.,

obtained using exact synthesis) to map or rewrite the network. Our approach combines and

extends state-of-the-art technology mapping [38] and logic rewriting [68, 167].

Our mapper implements the best characteristics of these two methods and addresses

the LUT-based mapping and cut rewriting drawbacks. Boolean matching is used to bind the

cuts to the available structures or primitives. Thus, accurate decomposition costs (size and

depth) are available during mapping. The cover is minimized using size and depth instead of

the number of LUTs and LUT levels. This helps to better exploit shared logic as compared to

LUT-based mapping (e.g., our mapper maps each node in Figure 5.1a with a LUT since this

cover has a lower decomposition cost than the one in Figure 5.1b, preserving the shared node

p). The mapper executes multiple mapping refinements, from global to local optimization.

In this way, the mapper generates the cover globally accounting for shared logic and then

optimizes it locally, in the MFFCs. This approach helps choose better replacements with a

global view (e.g., our method achieves the structure in Figure 5.2c when mapping from the

structure in Figure 5.2a). Our mapper does not need to rewrite each cut. Nevertheless, an

option exploits structural hashing during the last iteration to find shared nodes among the

structures. This typical feature of rewriting is controlled by technology mapping algorithms to

select the replacements.

The mapper is implemented in a flexible parameterized way so that it can switch to

different cost functions for delay-oriented or area-oriented mapping. Algorithm 5.1 shows the

mapping steps. The mapper maps for delay by executing a delay-oriented mapping followed by

area-recovery iterations. Area-oriented mapping is achieved by bypassing the delay-oriented

iteration or by relaxing the required time constraint. In this section, the terms area and delay

are equivalently used as size and depth, respectively.

The algorithm can be summarized in the following four steps:

• Library generation

• Cut enumeration

• Boolean matching

• Mapping

Library generation

We define a library as a hash table that is used to classify structures for simple and fast Boolean

matching. Given a Boolean function represented as a truth table, the library returns, if possible,

123

Chapter 5 . Mapping for Logic Synthesis

Algorithm 5.1: Versatile Mapper

Input: Boolean network N , cut size k, library, cut_sorting_func, constraints, skip_delay,
AreaGlobalIter, AreaLocalIter, AreaStrashIter, rw_limit

Output: mapped network M
1 cuts ← compute_cuts(N , k, cut_sorting_func)
2 match_cuts(cuts, library)
3 if not skip_delay then
4 delay_oriented_map(N , cuts)

5 repeat AreaGlobalIter times
6 compute_required_times(N , cuts, constraints)
7 global_area_oriented_map(N , cuts)

8 repeat AreaLocalIter times
9 compute_required_times(N , cuts, constraints)

10 local_area_oriented_map(N , cuts)

11 M ← new_network()
12 foreach primary input i ∈ N do
13 create_input(M , i)

14 if graph mapping and AreaStrashIter then
15 compute_required_times(N , cuts, constraints)
16 local_area_strash_oriented_map(N , cuts, M , rw_limit) ▷ Enhanced exact area
17 remove_dangling(M) ▷ Remove non-reachable nodes

18 else
19 finalize_network(N , cuts, M)

20 return M

a set of structures that can implement that function.

Based on the target graph representation, a database of structures is generated using

SAT-based exact synthesis. We utilize the algorithms described in [69], incorporating single

selection variable (SSV) or multiple selection variable (MSS) encodings, to generate multiple op-

timum structures for each k-input N P N class (k = 4 in our experiments). Alternatively, also

enumeration can be used. The pre-computed structures, classified into N P N -equivalence

classes, are saved in a Boolean matching library. Each class functionality is expressed by a

representative truth table, which is computed by finding the lexicographically smallest truth

table in the class. Contrarily to the one in Chapter 4 for standard cells, N P N -configurations

by permuting and negating variables are not enumerated for scalability reason. Note that

in the worst case the number of configurations generated would be k !×2k+1 for a k-input

structure. Consequently, functions are matched to structures by canonicalization (more de-

tails in the Boolean matching subsection). For each structure, the pin-to-pin delay and the

area are computed given a cost function. The pin-to-pin delay describes the depth of the

longest path from an input pin to an output pin. The area is defined as the size of the structure.

Additionally, also inverter costs are supported.

124

5.2 Versatile Graph Mapping

Cut enumeration

Cut enumeration computes a set of k-feasible cuts for each node in the subject graph (line 1

of Algorithm 5.1). The computation proceeds in topological order from the primary inputs

(PIs) to the primary outputs (POs) as in [140]. The cut computation is independent of the

graph representation and works for nodes with a variable number of inputs, as shown in

Equation 2.5.

For each non-trivial cut, the corresponding truth table is computed. Truth tables are

minimized by reordering variables and removing the ones without a functional support. This

process eliminates “holes” in the truth table that prevent cuts from matching with the gates

(whose truth table is minimized). In this case, the support of the cuts is reduced accordingly.

An average of 0.06% additional cuts can be matched in the EPFL benchmark suite [3]. This

number is not so small when considering the large amount of cuts that are typically generated.

Moreover, these cuts are often good since they include don’t care conditions.

Example 5.2.3. A cut C with leaves {l1, l2, l3, l4} and truth table 0x0f05, in hexadecimal format,

can be minimized to cut C ′ with leaves {l1, l3, l4} and function 0x31 since l2 in C does not have

functional support. ▲

During the enumeration phase, cuts are sorted on the fly based on their depth, area

flow [40, 124], and size, under the unitary model. The cut prioritization is selected depending

on the desired goal of the mapping. For a delay-oriented mapping, the sorting function

primarily sorts for the depth while for area-oriented mapping, it orders primarily for area flow.

To decrease the number of candidate cuts at each node, only a small number l is selected. On

top of that, the trivial cut is added. This guarantees that at most l +1 cuts are saved at each

node, so, for a node with fan-in size equal to m, a maximum of (l +1)m cuts are enumerated.

This technique is referred to as priority cuts [47].

Boolean matching

Given a cut and the corresponding truth table, Boolean matching finds a set of gates that can

implement that function. The pre-computed library of structures discussed in the library

generation sub-section is used to achieve that. The library stores the database of structures

in N P N classes. Boolean matching is achieved using function canonicalization to get the

N P N class representative. The canonicalization procedure finds the lexicographically small-

est truth table (the N P N -class representative), the permutations, and the input negations

to apply.

Mapping

Delay-oriented mapping aims at covering the subject graph by selecting the gates that min-

imize the arrival time at each node. The computation (line 4 of Algorithm 5.1) proceeds in

125

Chapter 5 . Mapping for Logic Synthesis

topological order (from PIs to POs), over the internal nodes of the subject graph. For each

node, the cut and the structure with the best arrival time is selected. The area overhead is then

addressed during area recovery once the required times at the nodes are known. Area-oriented

mapping or area recovery are performed in multiple passes over the nodes in the subject

graph. We use a first heuristic called area flow [40, 124] for a global area optimization (line 7 in

Algorithm 5.1) and a second method called exact area [47] for a local area optimization (line 10

in Algorithm 5.1). Our algorithm maps and adjusts the cover using these two methods iterated

multiple times if necessary. The area passes are constrained by the required time so that the

worst-case delay is not increased. Depending on the mapping phase, the cost criteria to select

the best gate are shown in Table 5.1.

We extend exact area, detailed in Algorithm 4.1, by incorporating an option for high-effort

area optimization in graph mapping to exploit structural hashing for identifying shared nodes

(lines 14-17 in Algorithm 5.1). Exact area is a local refinement of the cut selection which is

driven by the area in the MFFC. The area is locally reduced by selecting a cut so that the sum of

the area of the best cuts in the MFFC is minimized. Given a current cover of the subject graph,

the exact area for a node n can be computed using recursive cut referencing and dereferencing

procedures. A recursive cut referencing (dereferencing) algorithm recursively explores the

MFFC of a node in the cover and counts its area. The last local area iteration for graph mapping

may include a rewriting of the l best cuts per node with structural hashing, called rw_limit in

Algorithm 5.1, to find shareable nodes among the possible structures. In topological order, for

each node, a candidate match is inserted in the network using one-level structural hashing

by permuting and negating the inputs according to the N P N transformation. Then, the

number of added nodes is measured using node referencing and dereferencing similarly to

rewriting [137]. Exact area is computed normally using the measured area value instead of

the pre-computed area of the match. The match that minimizes the exact area at the node is

selected. Structural hashing in exact area helps to select matches that share nodes with other

structures in the cover. This method is particularly effective also when multiple alternative

structures are available per N P N class and exact area with structural hashing is executed

only on the previously selected best cut (rw_limit is 1).

Example 5.2.4. Figure 5.1 showed an example where LUT-based rewriting is unsuccessful. Let

us assume that we have a database with multiple alternative structures and a circuit with the

cover shown in Figure 5.1b. Exact area with structural hashing would identify the solution in

Figure 5.1a, instead of the one in Figure 5.1c, thanks to the precise counting of shared nodes.

Hence, our mapping algorithm achieves better logic sharing both at a coarse-grained level using

Table 5.1: Gates selection criteria

Mapping Phase Cost criterion Tie-breaker 1 Tie-breaker 2
Delay arrival time area flow cut size
Global area area flow arrival time cut size
Local area exact area arrival time cut size

126

5.2 Versatile Graph Mapping

accurate costing of cuts, and at a fine-grained level by looking at sharing opportunities within

possible implementations. ▲

In the finalization process, the resulting network is created using the computed cover and

the associated gates (line 19 of Algorithm 5.1).

5.2.3 Experimental Results

In this section, we evaluate the versatility of the mapper and compare it to state-of-the-art

methods. Although the original implementation described in [201, 202] can be used for

conventional technology mapping for standard cells, we focus on graph mapping only since

the standard-cell mapping problem has been extensively discussed in Chapter 4. We first

use the graph mapper to convert AIGs to MIGs and perform logic rewriting. We compare our

results to state-of-the-art LUT-based rewriting and cut rewriting methods. Next, we map from

AIGs into XAGs and XMGs. As baseline for all the experiments, we use the EPFL combinational

benchmark suite [3] containing combinational circuits provided as AIGs.

The graph mapper has been implemented in C++17 in the open-source logic synthesis

framework Mockturtle1 [183] as a command map. The experiments have been conducted on

an Intel i5 quad-core 2GHz on MacOS. All the results were verified using the combinational

equivalent checker in ABC2.

Mapping into MIGs and logic restructuring

In this experiment, we compare our mapper to LUT-based rewriting and cut rewriting to

optimize MIGs. The LUT mapping is realized with the synthesis package ABC using the

command &if -a -K 4 followed by a node resynthesis in Mockturtle that decomposes each

LUT with a matching structure contained in a database of optimum-size structures. Rewriting

is achieved using the standard cut rewriting algorithm in [167] implemented in Mockturtle. For

the experiment, we use a database obtained with exact synthesis with size-optimum structures

for the 4-input N P N classes. Up to 10 alternative structures are available for each N P N

class. The mapper computes cuts of size 4 and stores up to 25 cuts per node. The versatile

mapper is set for area-oriented mapping with one round of global area, two rounds of local

area, and a high-effort round rewriting the two best-matched cuts, for a low impact on run

time. The restructuring methods are iterated until no more improvement.

The results are shown in Table 5.2. We evaluate the results in terms of size reduction

with respect to the baseline. Graph mapping achieves better results in all the benchmarks

compared to previous methods, reducing the average number of majority gates from 10%

more, compared to LUT-based rewriting, to 20% more, compared to cut rewriting. Additionally,

1Available at: https://github.com/lsils/mockturtle
2Available at: https://github.com/berkeley-abc/abc

127

https://github.com/lsils/mockturtle
https://github.com/berkeley-abc/abc

Chapter 5 . Mapping for Logic Synthesis

Table 5.2: Experimental results for mapping and rewriting MIGs

Benchmark Baseline LUT-based rewriting [70] Cut rewriting [167] Versatile mapper
Size Depth Size Depth Time (s) Size Depth Time (s) Size Depth Time (s)

adder 1020 255 385 130 0.05 893 129 0.08 384 129 0.06
bar 3336 12 2940 14 0.15 2952 15 0.71 2588 13 1.79
div 57247 4372 48827 4288 22.77 41553 2276 157.27 36858 2235 14.95
hyp 214335 24801 163398 9168 15.80 178736 9330 93.93 137048 8885 28.83
log2 32060 444 25651 247 3.91 30056 420 8.88 24295 206 3.20
max 2865 287 2446 248 0.35 2346 240 0.85 2171 162 0.96
multiplier 27062 274 20309 138 3.07 24829 271 12.37 19299 142 2.97
sin 5416 225 4560 159 0.44 5049 201 3.66 4196 122 1.14
sqrt 24618 5058 21002 6132 2.29 23889 4941 11.69 17355 3846 45.75
square 18484 250 14050 155 1.24 17669 163 8.85 11924 126 2.39

Total 50.09 298.27 102.05
Reduction 22.66% 25.10% 11.47% 20.54% 32.11% 41.88%

exact area with structural hashing contributes to further improve the standard implementation

by up to 10% more and 1.23%, on average, in number of gates. These results validate our

motivations and solutions for exploiting shared logic and incorporating global optimization.

Furthermore, our mapper achieves a reduction in depth that other methods cannot match.

Mapping into XAGs and XMGs and logic restructuring

For this experiment, we used the XAG and XMG databases of structures obtained using exact

synthesis and containing a single structure per NPN class to fairly compare against the state of

the art. We run the graph mapping for area mapping until convergence using cuts of size 4.

The results are shown in Table 5.3. The baseline is the same as the one reported in Table 5.2

containing only AND gates. The geometric mean is computed over size and depth. In the table,

we compare our results with previous work on LUT-based rewriting XMG optimization. We

use the results in [68], using cuts of size 4, and in [43], using cuts of size 6 and on-the-fly exact

synthesis combined with decomposition. Our mapper obtains considerably better results in

all the benchmarks for XMG optimization compared to the work in [68]. Moreover, our mapper

obtains better results compared to the best results in previous work [43, 68] in 7 out of 10

benchmarks with an improvement of 12.22% in geomean and of 27.45% in size/depth product

compared to [43]. Note that these results used LUT-mapping and exact synthesis on-the-fly on

cuts of size 6. Consequently, their method needs significant run time to compute the optimum

structures while rewriting since complete 6-input databases are too big to be pre-computed

and stored. This result shows again the advantage of our approach over LUT-based mapping.

5.3 Scalable Logic Rewriting Using Don’t Care Conditions

Logic rewriting is a powerful optimization technique that iteratively rewrites small sections

of a Boolean network with better implementations, typically evaluated in terms of size or

depth. Many varieties of logic rewriting methods have been proposed in the literature, such as

128

5.3 Scalable Logic Rewriting Using Don’t Care Conditions

Table 5.3: Experimental results for rewriting XAGs and XMGs

Benchmark XAG XMG XMG (k = 4) in [68] XMG (k = 6) in [43]
Size Depth Size Depth Size Depth Size Depth

adder 639 256 383 128 639 130 383 128
bar 3013 13 2944 14 3281 16 2149 14
div 29124 4316 17613 2300 29607 4371 37003 4243
hyp 158682 24912 114746 8984 155349 12507 99428 8755
log2 24330 327 21361 204 27936 275 22957 213
max 2766 234 1845 157 2296 296 1938 200
multiplier 18651 268 15642 134 17508 154 16357 133
sin 4259 175 3728 138 5100 176 3896 140
sqrt 12617 6122 9750 2431 20130 6031 17187 5169
square 13876 247 11250 126 15070 130 8325 156

Average 26,795.7 3.687.0 19,926.2 1,461.6 27961.6 2408.6 20,962.3 1,915.1
GeoMean 2,293.1 1,511.2 2,117.8 1,721.6
Size · Depth 98,795,745.9 29,124,133.9 66,697,987.8 40,144,900.7

DAG-aware rewriting [137], cut rewriting [167], LUT-based rewriting [70], and mapping-based

rewriting [201, 202] (Section 5.2). Typically, SAT-based exact synthesis [69] is used to com-

pute optimum replacements for sub-networks. However, exact synthesis is computationally

expensive and generally limited to synthesizing networks up to four inputs. In industrial

applications, on-the-fly computation of replacements using exact synthesis is generally run

time prohibitive, even for small logic blocks. Hence, structures are typically pre-computed

and saved in a database. Logic rewriting with databases employs Boolean matching [123]

to retrieve implementations from the database given a Boolean function. However, while

Boolean don’t cares are supported by on-the-fly exact synthesis, they are not supported by

logic rewriting using a pre-computed database. In the academic tools ABC [30] and Mocktur-

tle [183], size-optimum databases for logic rewriting contain up to 4-input networks. In [8], a

delay-optimum database has been constructed using exact synthesis to generate up to 4-input

networks.

Logic rewriting is very effective at optimizing many graph representations, such as the

majority-inverter graph (MIG) [5], composed of three-input majorities and inverters, with

many applications in standard-cells flows, and majority-based emerging technologies [129,

168].

This work presents improvements to logic rewriting by enabling the use of Boolean don’t

cares (DCs) with pre-computed databases. First, we present the notion of don’t care class that is

used to classify a database based on don’t cares and permissible functions. This computation

typically takes less than half a second for databases containing up to 4 input functions. Then,

we present a Boolean matching approach to access the database while leveraging Boolean

don’t care conditions. Finally, we propose an efficient integration of window-based don’t care

computation and matching in cut-based logic rewriting.

In the experiment section, we show that mapping-based rewriting with DCs reduces up to

129

Chapter 5 . Mapping for Logic Synthesis

13.21% and 0.62%, on average, the size compared to the state-of-the-art MIG flow over the

EPFL benchmarks. Notably, in this experiment, we compare one algorithm against a flow of

three algorithms composed of the standard mapping-based rewriting and variants of Boolean

resubstitution. We achieve even more reductions in size up to 14.32% and 4.31% average after

integrating logic rewriting with DCs in the state-of-the-art flow. Additionally, we show that

logic rewritying with DCs contributes to obtain the best-known results in MIG size for the

EPFL benchmarks.

5.3.1 Don’t Care Classes

Due to controllability or observability don’t cares (DCs) in a logic network, often a Boolean

function f can be changed into another one, f ′, without affecting the intended behavior of

the circuit at the primary outputs. Such a function f ′ is called a permissible function, and the

functional flexibility is described by its don’t care set dc. A set containing all the permissible

functions of f is referred to as the maximum set of permissible functions (MSPF) [151].

In this section, we present a method to represent a database of structures and compute

permissible functions under Boolean don’t cares. At this phase, permissible functions are

computed under all possible Boolean don’t care conditions to enable efficient Boolean match-

ing. First, the database is classified into N P N -equivalence classes. Then, it is processed to

compute all the don’t care sets that lead to a permissible function with better cost. Finally, we

present our algorithm for Boolean matching, assuming don’t cares are provided.

Database

The database is internally represented as a compact data structure that facilitates fast Boolean

matching. The database is classified into N P N -equivalence classes to limit the number of

entries (e.g., 222 for 4-input functions). Each class functionality is expressed by a representative

truth table, which is computed by finding the lexicographically smallest truth table in the

class. A class may list several implementations (Boolean networks), each realizing the class

representative function and described by its area cost and pin-to-pin delay.

Don’t care classes

Given a database classified into N P N -equivalence classes, we compute minimal don’t care

sets that support moving from an N P N class into a function in a different N P N class.

The definition of minimal is given later in the text as Definition 5.3.4. Informally, this problem

can be seen as the construction of a directed graph where nodes are N P N classes and edges

are don’t care sets. This idea is similar to the work of Mailhot [123], where vertices are N P N

classes, but edges link functions that differ by one minterm. Thus, our approach differs in

the size of the graph, the number of edges, and the Boolean matching technique. The graph

creation is achieved by enumerating and storing don’t care sets for each class.

130

5.3 Scalable Logic Rewriting Using Don’t Care Conditions

Don’t care sets are represented as truth tables. For a function f , an entry bi in its don’t care

set dc is ‘1’ if the bit in position i of f can be flipped. This information introduces flexibility in

the functionality potentially leading to a better implementation (Boolean simplification).

Example 5.3.1. Let c be a 2-input cut in an and-inverter graph (AIG), composed two-input

ANDs and inverters, with function f = 1001 and don’t care set dc = 0001, which is extracted

from conditions external to the cut. The cut represents an XNOR function that needs 3 AND

nodes to be implemented. The don’t care set introduces flexibility to flip bit b0 of f to obtain

f ′ = 1000, which is an AND function that needs only one AIG node, improving the AIG size. ▲

We define a don’t care class that belongs to an N P N class as a set of don’t cares that

supports Boolean transformations into better permissible implementations. Generally, for a

function f on k variables, there exist 22k
possible don’t care sets. Moreover, for each don’t care

set dc, there are 2p possible permissible functions, where p is the number of minterms in dc,

i.e., the number of bits at 1 in dc . Therefore, filtering mechanisms are necessary to enable the

computation and limit the search space during Boolean matching. To enable Boolean don’t

cares, we use two assumptions that limit the number of matching possibilities, stored don’t

care sets, and permissible functions.

Assumption 5.3.2. To evaluate the benefit offered by a don’t care set, we use the best implemen-

tation area in the maximum set of permissible functions (MSPF).

If a database contains the size optimum implementations, the best area coincides with the

area optimum. This assumption prioritizes the area over other metrics for multiple reasons.

First, logic rewriting is typically area-oriented. Second, the area is usually independent of the

context of the rewriting, whereas propagation delay depends on the arrival time, and it cannot

be evaluated offline. Third, often better area implementation offer also better delay (especially

in the context of technology-independent optimization). This assumption is used as a filter.

In other words, we only store don’t care sets for which there exist a function in the MSPF that

offers a better implementation in terms of area cost.

Assumption 5.3.3. For each don’t care set, we select one permissible function that minimizes

the area.

Given a don’t care set for a function f , the size of the MSPF can be pretty large, offering

many implementation options. Evaluating all of them during logic rewriting may significantly

increase the run time without offering a considerable advantage. Hence, for each don’t care

set, our method stores a single permissible function that minimizes the area cost.

Before proceeding with the technical explanation, we remind the reader of a definition

presented in Section 2.2.1. A truth table t1 is said to imply, or cover, another truth table t2 if

each bit of t1 is true also in t2. This relationship is denoted as t1 ≤ t2. Similarly, t2 is said to be

implied by t1, denoted as t2 ≥ t1. For instance, 1000 ≤ 1001.

131

Chapter 5 . Mapping for Logic Synthesis

To further filter the number of saved don’t care sets, we employ the definition of dominance.

Definition 5.3.4. For a function f , a don’t care set t1 is said to dominate a don’t care set t2 if

t1 ≤ t2 and the best area cost in the MSPF of f for t1 is not worse than the one for t2. The set t2 is

said to be dominated by t1.

Informally, we refer to a non-dominated don’t care set as minimal. Non-minimal sets are

redundant to store since they are implied and don’t offer better implementations.

Algorithm 5.2 shows the procedure to compute don’t care (DC) classes and permissible

functions. The algorithm takes a database classified into N P N -equivalence classes and

the maximum number of input variables in the database, which is typically 4, as inputs. The

procedure starts by iterating through each N P N class, assigning to fi the class represen-

tative function. At line 2, the DC class for fi is set to empty. Then, from line 3 to 12, the

procedure iterates to all the other classes f j with a better area cost than fi . At this step, all the

possible don’t care sets that link fi and f j are computed. To achieve that, all the negations

and permutations configurations of f j are enumerated to capture all the functions g in the

N P N class of f j . Along with g , the enumeration generates the input permutation vector

perm and input/output negation vector neg that store the information to transform g into

f j . The don’t care set dc, which links fi and g , is computed using the exclusive disjunction

operator at line 8. Then, dc is checked for dominance following Definition 5.3.4. If the don’t

care set is currently minimal, previously computed dominated sets are removed, and the new

one is inserted in dc_cl ass. The set is inserted together with the input permutations and

input/output negations to apply to fi under don’t care set dc to obtain f j . Finally, dc_cl ass

is sorted by implementation area in ascending order. If a database is partial, i.e., it does

not contain implementations for each N P N class (not complete), the best area of missing

classes is assumed to be infinite.

Example 5.3.5. Let us consider the N P N -4 class fi = 0x033c, with the bit string represented

in hexadecimal format, having best area of 4. First, let us consider the class f j = 0x0000 =⊥3

that represents constants, of cost 0. The two possible don’t care sets that link the two classes

are dc1 = 0x033c and dc2 = 0xfcc3, since fi ∧¬dc1 =⊥ and fi ∨dc2 =⊤. The two DC sets are

minimal and are found by taking the Boolean difference between fi and f j for dc1, and fi and

f̄ j for dc2. ▲

Example 5.3.6. Let us consider the previous class fi = 0x033c and a class f j = 0x003c = x̄3 ∧
((x1 ∧ x̄2)∨ (x̄1 ∧ x2)) of with cost of 3. Along with the trivial DC set dc3 = 0x0300, there exist

another one, dc4 = 0x000c, with permutations P I : (x0x1x2x3 → x0x3x1x2) and no negations.

If we flip bits using the don’t care conditions we obtain g = fi ∧¬dc4 = 0x0330 = x̄1∧((x2∧ x̄3)∨
(x̄2 ∧x3)), which is a permutation P −1

I of class f j
4. ▲

3Symbol ⊥ represents constant zero while symbol ⊤ represents constant one.
4Permutation P −1

I represents the inverse (or transpose) of P I , if represented as a permutation matrix. In the

example P −1
I : (x0x3x1x2 → x0x1x2x3).

132

5.3 Scalable Logic Rewriting Using Don’t Care Conditions

Algorithm 5.2: Extracting don’t care classes
Input: Database d at a, Number of variables k
Output: Don’t care classes dc_class

1 foreach function fi in N P N (k) do
2 dc_cl ass(fi) ←;
3 foreach function f j in N P N (k) do
4 s j ← best_area(f j , d at a)
5 if s j ≥ best_area(fi , d at a) then
6 break

7 foreach {g , per m,neg } in npn_enumeration(f j) do
8 dc ← fi ⊕ g
9 if is_dominated(dc, dc_cl ass(fi), s j) then

10 continue

11 remove_dominated(dc, dc_cl ass(fi), s j)
12 dc_cl ass(fi).add(dc, f j , per m, neg)

13 sort_dc_class(dc_cl ass(fi))

14 return dc_class

Regarding the scalability of Algorithm 5.2, the computation of don’t care classes takes less

than half a second for databases up to 4-inputs and very low memory. For larger databases, this

method would experience limitations due to the double exponential increase in the number

of Boolean functions. Hence, it may necessitate restricting the computation to only practical

classes for functions of more than 4 variables. Practical classes are a subset of N P N classes

that are often observed in common designs and tend to be much less in number compared to

the number of N P N classes. For instance, common practical functions are the fully- and

partially-decomposable functions. In [68], the authors found only 286 unique N P N classes

for 6-input functions when mining the EPFL benchmarks [3].

5.3.2 Matching with Don’t Cares

Given a Boolean function and its don’t care set, as truth tables, Boolean matching returns a list

of implementations in the MSPF class with minimal cost computed by Algorithm 5.2.

The Boolean matching procedure is shown in Algorithm 5.3. Compared to standard

Boolean matching over N P N classes, our algorithm adds the steps from line 2 to 8. The

algorithm takes a function f , its don’t care set dc, the database, and the don’t care classes as

inputs. First, function f is canonicalized by computing the lexicographically smallest truth

table in its N P N class using fast enumeration [82]. The class representative fc is returned

along with its permutation and negation vectors. Then, the permutations are applied to the

don’t care set such that its bits respect the new permutation in fc (line 2). Input and output

negations are not applied since they don’t affect the don’t cares. Then, the don’t care class of

fc is accessed to retrieve a better implementation. Each entry is accessed in order, from the

smallest area implementations to the largest. Each entry is composed of its don’t care set t , its

133

Chapter 5 . Mapping for Logic Synthesis

Algorithm 5.3: Boolean matching with don’t cares

Input: Function f , Don’t care set dc, Database d at a, Don’t care classes dc_class
Output: Matches M , Permutations per m, Negations neg

1 { fc , per m,neg } ← npn_canonicalize(f)
2 dc ← apply_permutations(dc, perm)
3 foreach {t , fi , p,n} in dc_cl ass(fc) do
4 if t ≤ dc then
5 per m ← apply_permutations(per m, p)
6 neg ← apply_permutations(neg , p)
7 neg ← neg ⊕n
8 return {d at a(fi), per m, neg }

9 return {d at a(fc), per m, neg }

N P N class representative fi , the permutation vector to apply p, and the negation vector

to apply n. The entry is a permissible function if t ≤ dc, i.e., the don’t care set t implies dc.

As soon as this is true, the algorithm returns the implementations for the best permissible

function. Before returning, the previously computed permutation and negation vectors are

adjusted to match the new N P N class and its representative (from line 5 to 7). This is

required to match the functionality of the new class, as shown in Example 5.3.6. If no entry

matching the given don’t care set is found, the algorithm returns the implementations from fc .

5.3.3 Logic Rewriting with Don’t Cares

This section describes the integration of Boolean matching with don’t cares into classical logic

rewriting algorithms. The classification of the database and the computation of the don’t care

classes presented in Section 5.3.1 are independent of logic rewriting, are computed offline,

and are not addressed in this section. Algorithm 5.4 reflects the implementation of DAG-aware

rewriting [137] with an extension to support Boolean don’t cares. Similarly, this method can be

integrated into alternative rewriting or mapping techniques.

Algorithm 5.4 tries to replace small sections of the network defined by cuts with a better

implementation. The algorithm processes the nodes in topological order and searches for

the best replacements that locally improve the area. Compared to the standard rewriting,

Algorithm 5.4 adds the steps between line 3 and 12. For each gate g , the k-feasible cuts rooted

in n are computed using a cut enumeration procedure [47]. Then, a reconvergence-driven

window of l inputs, having l > k, is extracted around gate g . The window can be single-output

(a cut) in the case when only controllability don’t cares are used, or multiple-output, expanded

over the transitive fan-out of g when also observability don’t cares are used. Then, complete

simulation is performed over the window to extract complete truth tables for each covered

node. The truth tables are on l variables and computed with respect to the inputs of the

window. Next, for each cut, the best matches are evaluated. First, for a cut c, its function f is

extracted. Then, if the cut fits in the window, i.e., all its leaves are contained in the window, its

134

5.3 Scalable Logic Rewriting Using Don’t Care Conditions

Algorithm 5.4: Logic rewriting with Boolean don’t cares

Input: Network N , Database d at a, Don’t care classes dc_class, Cut size k, Cut size l
1 foreach gate g ∈ N in topological order do
2 C ← compute_cuts(N , g , k)
3 W ← reconvergence_driven_window(N , g , l)
4 S ← simulate_window(W)
5 R ←Λ

6 best_g ai n ← 0
7 foreach cut c ∈C do
8 f ← truth_table(c)
9 dc ←⊥

10 if c ⊂W then
11 dc ← compute_dont_cares(c, W , S)

12 {M , p,n} ← bool_matching(f , dc, d at a, dc_cl ass)
13 g ai n ← evaluate_gain(N , g , c, M , p, n)
14 if g ai n > best_g ai n then
15 R ← candidate_replacement(N , g , c, M , p, n)
16 best_g ai n ← g ai n

17 if best_g ai n > 0 then
18 replace(N , g , R)

don’t care set is computed from the window. If it doesn’t, don’t cares are ignored for the cut.

Alternatively, a window may be computed to guarantee containment at the cut at the cost of

additional run time. However, experimental results have shown that many cuts tend to be

included in the window. Next, Boolean matching is performed according to Algorithm 5.3,

and candidate replacements are evaluated. Finally, the candidate with the best area gain is

used as a replacement.

The most runtime-intensive process of logic rewriting with Boolean don’t cares is the

computation of DCs. Boolean DCs for a cut are extracted starting from a window of logic that

includes it. First, the window is simulated over its input to collect complete simulation patterns.

Given simulation patterns, controllability don’t cares (CDCs) are computed by checking which

combinations of patterns appear at the leaves of the cut. Non-appearing patterns are CDCs

for the cut. This process is called projection of the don’t cares and its complexity is exponential

in the number of leaves of the window. Observability don’t cares (ODCs) at a gate g are instead

computed by checking for which patterns the Boolean difference between the function of the

gate g and its inverse is observable. Let S(g) be the simulation pattern in the window for gate

g and let O be the set of output of the windows. First, the window is re-simulated fixing the

simulation of gate g to ¬S(g) and obtaining the simulation patterns S′ at the outputs. The

135

Chapter 5 . Mapping for Logic Synthesis

a b c

x

y

∧

∧

∨ sa = 1111 0000
sb = 1100 1100
sc = 1010 1010
sx = 1000 1000

fy = 1111 1000
cy = 1101 1101

dcy = 0010 0010

Figure 5.3: Example of projection of CDCs on a cut.

ODCs are then computed as follows:

ODCg =¬ ∨
o∈O

S(o)⊕S′(o).

The ODCs need to be projected over the cut leaves as for CDCs. Despite being the run time

bottleneck of logic rewriting, projections for multiple cuts can be computed in parallel, notably

reducing the impact over run time.

Example 5.3.7. Figure 5.3 shows an example of CDC computation and projection on an AIG. In

this example, the window covers the entire circuit. First, the window is simulated, obtaining

the patterns sa , sb , sc , and sx . Patterns sa , sb , and sc are the input patterns of the window and

are used to simulate all the input combinations (each bit bi in every input pattern represents a

combination). The section in blue represents a cut to optimize with function fy = a′∨ (b′∧x ′),

computed considering a′, b′, and x ′ as inputs5. The care set cy , of node y, i.e., the complement

of the don’t care set, is computed starting from the simulation patterns. Each combination of

input patterns at the cut sa , sb , and sx is used to set bits in cy . For instance, taking b0, the input

pattern of the cut is 000 (sa(0) = 0, sb(0) = 0, sx (0) = 0). Hence, b0 of cy is set to one, as it is an

appearing pattern. Taking b6, the pattern is 110 (sa(6) = 1, sb(6) = 1, sx (6) = 0) setting b6 of cy

to 1. At the end of this process, the care set has a “1” for occurring patterns. Finally, dcy =¬cy

is computed to express the CDCs of the cut. Consequently, fy can be simplified into 11111010,

which corresponds to a′∨x ′. This transformation removes a node while preserving the correct

functionality. ▲

5.3.4 Experimental Results

In this section, we present experimental results on logic rewriting with Boolean don’t cares.

For our experiments, we use the EPFL combinational benchmark suite [3] containing several

circuits provided as and-inverter graphs (AIGs).

The construction of the database, the generation of the don’t care classes, and Boolean

5Variables a′, b′, and x′ are “virtual” input variables of the cut. The link between a and a′, as well as the one for
other variables, is not visible by the cut.

136

5.3 Scalable Logic Rewriting Using Don’t Care Conditions

matching with don’t cares have been implemented in C++17 and used to extend the algorithms

in the open-source logic synthesis framework Mockturtle6. The database of structures used

in the experiments is available in the library and contains 4-input size-optimum implemen-

tations obtained using exact synthesis. Up to 10 structures are available for each N P N

class. The experiments have been conducted on an Intel i5 quad-core 2GHz on MacOS. All the

results were verified for functional equivalence.

Logic rewriting with Boolean don’t cares

In this experiment, we test logic rewriting with don’t cares to optimize majority-inverter

graphs (MIGs) [5], which have many applications in standard-cells design flows [5], and

majority-based emerging technologies [129, 168]. We compare our approach against the

state-of-the-art flow published in [104], which is based on the most effective MIG methods

known. The baseline flow carries the optimization by running the command compress2rs in

ABC, the mapping-based logic rewriting algorithm presented in Section 5.2 (and [202]) three

times, the MIG Boolean resubstitution in [168] until no more improvement, and the improved

MIG resubstitution presented in the paper itself [104]. These results have been reproduced on

our machine.

In our implementation, logic rewriting operates on a database of 4-input size-optimum

MIG implementations, the same one used in [202]. The classification of the database and the

computation of don’t care classes took less than half a second on our machine. We extended

the implementation of two logic rewriting algorithms to support don’t cares. In particular,

we improved the mapping-based logic rewriting algorithm in Section 5.2, referred to as map,

and the DAG-aware rewriting algorithm in [137], referred to as rw. DAG-aware rewriting has

been re-implemented following the versatile paradigm of Section 5.2. Both algorithms include

the don’t care computation as shown in Algorithm 5.4 for controllability don’t cares. In the

experiments, we don’t use observability don’t cares for two reasons: 1) ODCs are generally not

compatible, i.e., not safe to use in parallel optimization (like map does) [52]. Hence, additional

run time is required to compute compatible ODCs (CODCs); 2) experimental results using

ODCs (and CODCs) in logic rewriting have not shown significant benefits in quality. In our

implementation, don’t care projections have not been parallelized.

Table 5.4 shows the experimental results. To test our approach, we implemented three

flows with increasing optimization effort. All three flows are applied to initial results obtained

by executing the optimization script compress2rs in ABC, like for the state-of-the-art flow. Our

first flow, named “map with DCs”, consists of 3 iterations of map with CDCs computed from

12-input cuts. Our second flow, named “map + rw with DCs”, adds to flow one 3 iterations of

rw with CDCs computed from 8-input cuts. Finally, flow three, named “MIG flow with DCs”,

adds Boolean resubstitution [104] to flow two.

Our first flow reduces the size by 0.62%, on average, and up to 13.21% compared to the

6Available at: https://github.com/lsils/mockturtle

137

https://github.com/lsils/mockturtle

Chapter 5 . Mapping for Logic Synthesis

Table 5.4: Comparison between state-of-the-art MIG results and multiple MIG flows using
logic rewriting with don’t cares.

Benchmark Flow in [104] Map with DCs Map + rw with DCs Flow with DCs
Size Time (s) Size Red. (%) TBM (s) Time (s) Size Red. (%) Time (s) Size Red. (%) Time (s)

adder 384 0.18 384 0.00% 0.02 0.16 384 0.00% 0.20 384 0.00% 0.22
bar 2588 0.82 2597 -0.35% 0.06 0.73 2445 5.53% 1.68 2433 5.99% 1.72
div 12532 4.54 12551 -0.15% 0.40 6.58 12498 0.27% 12.27 12462 0.56% 16.30
hyp 124177 58.73 115856 6.70% 3.41 54.10 115628 6.88% 91.12 115541 6.95% 118.51
log2 23109 36.22 22714 1.71% 0.49 12.59 22430 2.94% 24.69 22010 4.76% 45.64
max 2210 0.99 2202 0.36% 0.06 1.08 2191 0.86% 2.28 2190 0.90% 2.63
multiplier 18440 6.80 17474 5.24% 0.47 7.10 17155 6.97% 10.08 17112 7.20% 12.65
sin 3967 4.20 4005 -0.96% 0.13 2.50 3929 0.96% 5.69 3870 2.45% 8.55
sqrt 12423 10.38 12450 -0.22% 0.34 7.06 12388 0.28% 10.60 12357 0.53% 16.08
square 9498 2.72 8243 13.21% 0.23 3.30 8163 14.06% 4.59 8138 14.32% 5.33
arbiter 6719 4.34 6996 -4.12% 0.17 5.27 6869 -2.23% 7.70 6711 0.12% 9.81
cavlc 533 2.60 525 1.50% 0.01 0.09 517 3.00% 0.17 492 7.69% 1.72
ctrl 79 0.62 84 -6.33% 0.00 0.01 81 -2.53% 0.02 74 6.33% 0.30
dec 304 0.23 304 0.00% 0.00 0.03 304 0.00% 0.03 304 0.00% 0.06
i2c 932 0.37 898 3.65% 0.02 0.18 893 4.18% 0.37 871 6.55% 0.49
int2float 181 0.24 180 0.55% 0.00 0.03 178 1.66% 0.04 172 4.97% 0.11
mem_ctrl 34777 17.18 35218 -1.27% 0.82 14.59 34727 0.14% 33.91 32097 7.71% 43.75
priority 431 0.30 426 1.16% 0.01 0.15 420 2.55% 0.29 406 5.80% 0.35
router 151 0.17 155 -2.65% 0.00 0.04 154 -1.99% 0.08 147 2.65% 0.11
voter 4561 1.74 4819 -5.66% 0.12 1.95 4564 -0.07% 3.56 4555 0.13% 4.45

Average 0.62% 2.17% 4.31%

state of the art. This is a major result considering that the comparison is between a single

command and a flow. Our flow includes the column TBM, which reports the total time taken

by Boolean matching with don’t cares. The matching time is a small fraction of the total time,

which is mainly dominated by the computation and projection of CDCs. Our second flow

further reduces the number of MIG nodes improving up to 14.06% and 2.17% on average the

state of the art. Almost every result is already significantly better before employing Boolean

resubstitution, which is the standard algorithm to leverage Boolean don’t cares. Notably, logic

rewriting is very effective at optimizing arithmetic benchmarks (the first 10 benchmarks).

Finally, the third flow uses also Boolean resubstitution to obtain superior results for every

benchmark reducing the size up to 14.32% and 4.31% on average.

Furthermore, we tested this approach on AIG optimization. While rewriting with DCs helps

reduce the number of AIG nodes, the improvement is less significant compared to MIGs since

AIG-resynthesis methods are much more mature. In particular, the area reduction compared

to standard rewriting [137] is up to 6.8% and 0.42% on average over the EPFL benchmarks,

previously optimized using the script compress2rs in ABC.

Best-known MIG results

We integrated the graph mapping and logic rewriting algorithms with Boolean don’t cares in

the design space exploration (DSE) engine in [106] to improve the best-known MIG results.

We show that by iterating these algorithms and logic collapsing using a LUT mapper in a flow

we can achieve a great improvement and the best-known results for MIG size. These results

were published in [109]. We refer the reader to the papers [106, 109] for further details on the

DSE engine.

138

5.4 Factored Form Literals Optimization

Table 5.5: Latest best results for MIG size optimization.

Benchmark Results in Table 5.4 New Best Results
Size Size Impr. Depth

adder 384 384 0.00% 129
bar 2433 1906 21.7% 15
div 12462 12368 0.75% 2251
hyp 115541 115539 0.00% 9129
log2 22010 22008 0.01% 184
max 2190 1939 11.5% 172
multiplier 17112 17112 0.00% 137
sin 3870 3869 0.03% 124
sqrt 12357 12247 0.89% 2156
square 8138 8089 0.60% 126
arbiter 6711 792 88.20% 108
cavlc 492 374 23.98% 16
ctrl 74 60 18.91% 8
dec 304 304 0.00% 3
i2c 871 636 26.98% 16
int2float 172 115 33.14% 9
mem_ctrl 32097 6886 78.54% 26
priority 406 337 17.00% 23
router 147 97 34.01% 13
voter 4555 3894 14.51% 32

Total 242326 208956 13.8% 14677

Table 5.5 shows the experimental results of the the design space exploration engine com-

pared to the flow in Table 5.4. The DSE achieves an average size reduction of 13.8%. On the

one hand, for most arithmetic benchmarks the results in Table 5.4 are very close to the ones

found by DSE or are exactly the best one known. This result highlights the power of DC-based

rewriting in improving the quality of results in an orthogonal way compared to previous meth-

ods. On the other hand, control and random logic benchmarks need multiple optimization

iterations and logic collapsing to converge to a good quality of results. For instance, we observe

a drastic improvement on the benchmarks arbiter and mem_ctrl.

5.4 Factored Form Literals Optimization

It is well-known that the factored form literal count (FFLC) correlates strongly with the number

of transistors required to implement a Boolean function [12]. Consequently, past research

efforts in technology-independent synthesis focused on synthesizing small Boolean networks

with a minimal FFLC [28, 100, 178]. Historically, FFLC minimization was performed on logic

networks with nodes represented in SOP form [28]. To our knowledge, this approach is still in

use in many EDA tools for standard-cell designs.

In the last few decades, substantial progress has been made by leveraging the simplicity of

139

Chapter 5 . Mapping for Logic Synthesis

an and-inverter-graph (AIG) representation [97] for the technology-independent synthesis

of Boolean networks [26]. AIG optimization methods can efficiently synthesize large AIGs

while minimizing the number of AIG nodes and logic levels. However, this optimization

does not inherently minimize the FFLC. Specifically, the relation between FFLC optimiza-

tion and AIG-based optimization has not been yet studied. As a result, current AIG-based

technology-independent synthesis may not work at its best for optimizing standard-cell-based

designs. Moreover, a fully custom design methodology could significantly benefit from mod-

ern and scalable FFLC optimization approaches. This research is motivated by applications

in transistor-level synthesis and the automated creation of custom optimized standard cells,

which could drive significant improvements in efficiency and performance.

In this work, we investigate the relation between FFLC optimization and AIG-based op-

timization. Then, we propose several efficient AIG-based FFLC minimization methods that

work without converting AIGs into logic networks, as required by traditional FFLC minimiza-

tion techniques [28]. The portfolio FFLC optimization includes (i) an enhanced Boolean

resubstitution [132], (ii) a modified version of AIG rewriting [137] and refactoring, and (iii)

a dedicated FFLC minimization that performs AIG re-mapping using a versatile technology

mapper [202]. In the experimental results, we show up to a 5.3% reduction in the literals

count, up to a 7% reduction in the area after technology mapping, and no run time increase

compared to a high-effort area-oriented AIG optimization. This demonstrates the ability of

FFLC optimization to refine the structure of AIGs to be more suitable for technology mapping.

Additionally, we discuss applications beyond traditional logic optimization, for transistor-level

synthesis and auto-creation of standard cells.

5.4.1 Preliminaries

Logic representations

Logic representations are key for developing robust EDA tools. They enable compact data

storage in memory and efficient implementation of optimization algorithms. One of the first

standard representations of Boolean logic was the Sum-Of-Products (SOP) [28]. An SOP is a

two-level representation consisting of the logic OR of product terms, which are logic ANDs of

literals (variables or their complements). This representation was motivated by programmable

logic arrays (PLAs) whose primitives are modeled directly using SOPs. Because of the simple

structure of a two-level circuit, the optimization problems for SOPs are well understood, which

led to the development of efficient heuristic and exact minimization methods. A powerful

extension of SOPs into a multi-level representation are factored forms [28]. A factored form is

defined recursively as follows. A literal is a factored form, and the logic OR or logic AND of two

factored forms is a factored form. Informally, a factored form is an SOP whose inputs are other

SOPs, etc.

Example 5.4.1. Given function f = ab +ac +ad +bcd in SOP form, we can derive a factored

form by factoring with respect to variable a. This gives us f1 = a(b + c +d)+ cbd. Note that a

140

5.4 Factored Form Literals Optimization

factored form is not unique. For instance, by factoring with respect to variable b, f2 = b(a+cd)+
ac +ad. However, this latter form is less optimized as it contains more literals. Nevertheless,

we can still factor it with respect to variable a, resulting in f3 = b(a + cd)+a(c +d), which is

another factored form having the same number of literals of f1. ▲

Logic optimization

Logic optimization is a key step that enables the design of efficient circuits. Over the years,

many techniques working on DAGs have been proposed. Choosing a few primitives to repre-

sent circuits as DAGs helps navigate through the logic and extract properties. State-of-the-art

methods are primarily working on And-Inverter Graphs (AIGs). The tool ABC [30] is considered

the state-of-the-art academic tool for logic optimization. ABC uses AIGs as the main logic

representation. The most common and powerful optimization algorithms are resubstitu-

tion, rewriting, refactoring, and balancing [132, 137]. Most of the optimization scripts are

composed of a combination of these algorithms:

• Resubstitution: Resubstitution [132], shortened to resub, (re)expresses the function of

a node using other nodes, called divisors, that are already present in the network. The

transformation is accepted if the new implementation of a node is better, according

to a target metric (e.g., size), compared to the current implementation of the node in

terms of its immediate fan-ins. This approach generalizes to k-resubstitution, which

adds k new nodes and removes at least k +1 nodes. The removed nodes are the ones

present in the maximum fan-out free cone (MFFC) [132] of the node. The functionality

of the new nodes is derived from a library of primitives used for resubstitution. In

the AIG implementation, added gates are 2-input ANDs with optional inverters at the

inputs/outputs.

• Rewriting: Rewriting [137] is a fast greedy algorithm that aims at minimizing the size

of a logic network by iteratively replacing sub-graphs rooted in a node with smaller

pre-computed structures while preserving the functionality at the root node. Typically,

pre-computed structures cover all the 4-variable functions classified into the NPN

equivalence classes for compactness [23].

• Refactoring: Refactoring is similar to rewriting. It iterates over large logic cones rooted

in a node and tries to replace the logic structure of the cone with a factored form of the

root function. The replacement is accepted if there is an improvement in the selected

cost metric (usually the number of gates) [132, 137]. Unlike rewriting, it does not rely

on a database implementation but instead uses methods that compute factored forms

directly from SOP representations.

• Balancing: Balancing is a fast algorithm that reconstructs logic by balancing the struc-

ture using the associative property such that the logic depth is minimized.

141

Chapter 5 . Mapping for Logic Synthesis

a b̄ ā b

ab̄ + āb

∧ ∧

∨

(a) Factored form

a b

∧ ∧

∧

ab̄ + āb

(b) AIG

Figure 5.4: Translation of a factored form of a XOR2 (a) into an AIG (b). Dashed edges represent
negations.

5.4.2 Factored Forms in AIGs

In this section, we describe the relationship between factored forms (FFs) and and-inverter

graphs (AIGs). This allows us to introduce the notion of factored form literals of an AIG and

propose algorithms to reduce the factored form literal count (FFLC). Unlike traditional logic

synthesis [28, 178], our approach does not need to convert an AIG into a logic network. Hence,

it offers better scalability for large designs.

One application of AIGs in synthesis is the representation of DAGs derived by Boolean

decomposition or factoring. In particular, FFs can be represented as syntax trees where nodes

are AND or OR operations, and leaves are literals (variables or their complements). Thus, FFs

can be directly represented by an AIG by translating ANDs to ANDs, and ORs to ANDs using

De Morgan’s law x ∨ y = x̄ ∧ ȳ . An AIG representation of a FF is composed of primary inputs

with multiple fan-outs, 2-input AND gates with a single fan-out (and possibly complemented

inputs), and an output associated with a primary input or a 2-input AND. In a FF, the number

of literals is given by its number of leaves. For instance, in Figure 5.4a the number of literals is

4. In the AIG representation of FFs, the number of literals is equal to the fan-out count of the

inputs of the graph.

Example 5.4.2. Figure 5.4 shows a representation of an XOR2 in FF and its translation into

an AIG. In Figure 5.4a the number of literals is 4 since the FF has 4 leaves. From Figure 5.4b

representing an AIG, the same result can be computed by summing the fan-out count of the

primary inputs. ▲

AIGs representing combinational logic are not FFs because AND nodes may have multiple

fan-outs. Nevertheless, FFs can be used to cover an AIG. Deriving the FF cover can be done by

a technology mapper.

In this work, we follow [39] and refer to nodes with a single fan-out as tree nodes, and to

nodes with two or more fan-outs as dag nodes. Let us consider an arbitrary AIG. For each

primary output, let us define cuts such that each node in the volume of cut is a tree node

(except for the root) and the leaves are either dag nodes or primary inputs. Note that this

142

5.4 Factored Form Literals Optimization

a c d e b

∧ ∧

∧ ∧ ∧

∧ ∧ ∧ ∧

∧ ∧

∧

f

(a) Initial network: 15 lits

a c d e b

∧ ∧

∧ ∧ ∧

∧ ∧

∧

∧

∧ ∧

∧

f

(b) After resub: 14 lits

Figure 5.5: Optimization of an AIG for factored form literals. Figure (a) shows the initial
network. Figure (b) shows the result with reduced literal count after resubstitution is applied
to the orange node. Nodes in green are roots of factored forms.

definition is different from the notion of the MFFC of a node because the MFFC may contain

dag nodes. By definition, each such cut covers a FF. Using this definition of a cut, we can cover

the whole AIG by recursively creating new cuts from the leaves of the existing ones. Thus, FFs

can cover an AIG and their number depends on the number of cuts in the cover. Hence, we

can define the FFLC of an AIG as the sum of the literals of each FF contained in an AIG.

Without employing the notion of the cover, the FFLC of an AIG can be computed using a

simple formula:

F F LC =O +2×G −M , (5.1)

where O is the number of primary outputs, G is the number of 2-input nodes, and M is the

number of 2-input tree nodes. Alternatively, the FFLC of an AIG is the sum of the fan-out

counts of the primary inputs and dag nodes.

Example 5.4.3. Figure 5.5a depicts an AIG representation of the 5-input Boolean function of a

partial product of a radix-4 Booth multiplier [156]. The AIG can be covered using 3 FFs rooted

in the green nodes. The one rooted in f is connected to a, e, b, and the other two green nodes.

The remaining two FFs rooted in the green nodes at the bottom are connected to c and d. The

total number of FF literals is 15 and it is given by Formula 5.1 (1+2×12−10 = 15) or by adding

the fan-out counts of the primary inputs and the two dag nodes in green. ▲

From the definition, it follows that FF literals in an AIG can be used as an alternative cost

function to carry out the optimization of combinational logic. The simple definition of literal

count makes it very efficient to compute.

143

Chapter 5 . Mapping for Logic Synthesis

5.4.3 Logic Optimization for Literal Count

In this section, we propose optimization algorithms aimed at reducing the factored form literal

count in AIGs. We re-formulate Boolean resubstitution, Boolean rewriting, refactoring, and

re-mapping to perform the literal count minimization. We suppose that each node n in an AIG

has a reference counter showing the number of its fan-outs [132]. Reference counting is used

for counting nodes in an MFFC and for efficient addition/removal operations for individual

nodes and their MFFCs. We can also use the reference counters of the nodes to classify them

into tree nodes and dag nodes and compute the FFLC.

Using Formula 5.1, we establish how local transformations affect the FFLC. A local change

in the FFLC can be computed using the following formula:

∆F F LC = 2×∆G −∆M , (5.2)

such that the dependency on O disappears. Moreover, peephole optimization algorithms have

only to track the local change in the number of 2-input nodes G and tree nodes M to evaluate

the reduction in FFLC, making the use of FFLC in optimization very efficient. Compared to

traditional AIG-based optimization, the FFLC cost functions additionally presents the ∆M

term.

Generally, if a 2-input dag node is removed from the graph, two literals are saved. If a tree

node is removed from the graph, one literal is saved. However, every time a restructuring

step increases the fan-out count of a tree node, the number of tree nodes decreases leading

to an FFLC increase by one. Consequently, some transformations may decrease AIG size but

increase the FFLC.

Example 5.4.4. Figure 5.6 shows a case in which the FFLC increases due to a node substitution.

In the example, the tree node p is substituted with a new node q. Removing p also removes any

node in the MFFC such as t . Consequently, two tree nodes are removed decreasing G and M by

two, and no dag node is transformed into a tree node. Node q is added starting from 2 tree nodes

and substituted into p. Therefore, one new tree node (q) is added, increasing G and M by one.

After adding a new node, two nodes increase their fan-out counts and become dag nodes. Hence,

even though the AIG size is reduced, the total FFLC increases by one. Other transformations may

increase or keep the AIG size constant but decrease the FFLC, as shown in Figure 5.5. This is not

exploited by the state-of-the-art methods. ▲

Resubstitution for factored form literals

In standard resubstitution, the improvement is measured by the difference between the count

of the nodes removed and added. The nodes that can be removed are the ones included in the

MFFC. Hence, the improvement is measured as |MFFC|−k where k is the number of added

nodes. Similarly, in resubstitution for literals minimization, the literal saving is given by the

difference between the literal count removed and added. The change in the number of literals

144

5.4 Factored Form Literals Optimization

p

t

q

∧ ∧ ∧

∧

∧

∧ ∧

∧

Figure 5.6: Substitution of p using a new node q that increases the number of factored form
literals by one.

can be computed locally using node reference counters. The reference counters track the

number of nodes removed/added (MFFC) and the tree nodes created/removed during the

manipulation. Finally, the change is evaluated using Formula 5.1. The algorithm employed

is a recursive dereferencing (referencing) that decreases (increases) the reference counter

of a node and recurs over the fan-ins if the reference count is 0 (1). In particular, recursive

dereferencing (referencing) is used to measure the MFFC. Literal savings are measured by

recursively dereferencing the node to substitute (root node) and counting the nodes removed

and the change in the number of tree nodes. Similarly, the creation of new nodes is measured

using recursive referencing.

This approach also supports filtering rules for candidates to speed up resubstitution. To

simplify the filtering rule, we do not account for the change in M for the root node when we

compute the savings, because any new node created will inherit the fan-out of the root node

leading to a zero change in M for the root. We can then use the support of the resubstitution

as a filtering rule. For instance, 1-resub adds one node to the network increasing G by one

adding 2 literals. For 2-resub, a minimum of 3 literals are added (one tree node), and so on.

Example 5.4.5. Figure 5.5 depicts the FF literal optimization based on resubstitution on a Booth

partial product. The orange node in Figure 5.5a is the target node for resubstitution. Figure 5.5b

shows the result where the total literal count and the number of FFs needed to cover the AIG are

reduced by one. Note that the AND number of nodes remains the same. The obtained structure

of the graph is more suitable for technology mapping leading to a 17% area reduction after

mapping the two implementations to a 7nm technology7 [44]. ▲

Rewriting and refactoring for factored form literals

Rewriting and refactoring are enhanced similarly to resubstitution. Standard rewriting enumer-

ates the 4-input cuts at a root node to match and evaluate the replacements. Refactoring uses

MFFCs or reconvergence-driven cuts [132]. The improvement of a replacement is measured

by counting the number of nodes in the cut that can be removed, i.e. the MFFC contained

in the cut, minus the number of nodes added when the structure is inserted. Rewriting and

7The first design in (a) has been obtained after synthesis in ABC using the script compress2rs. We used amap in
ABC for technology mapping.

145

Chapter 5 . Mapping for Logic Synthesis

refactoring for literals minimization evaluates the reduction equivalently for literals. Savings

in the number of nodes and literals are calculated using the same method since they are both

based on recursive dereferencing and referencing. This enables the use of both cost functions

with one as a primary cost criterion and the other one as a tie-breaker. Our implementation of

rewriting for FF literals optimizes for literals primarily and uses node savings as a tie-breaker.

This is motivated by compactness since an AIG with fewer nodes is easier to manipulate.

Mapping for factored form literals

We implemented a global re-mapping method for AIGs targeting the minimization of FF literals.

The method is similar to cost-based mappers applied to graphs [201, 202] and presented in

Section 5.2. It consists of cost-driven mapping, followed by Boolean decomposition of each cut

in the cover into an AIG, which can be seen as re-mapping. The algorithm works by computing

cuts for each node using the fast cut enumeration procedure [155] and assigning to each cut a

cost based on the FF representation. The FF is computed using the irredundant SOP (ISOP)

extracted from the Boolean function of the cut. The SOP is then factored using algebraic or

Boolean factoring [29]. Next, the technology mapper selects a cover to minimize the number

of FF literals in the Boolean functions of the cuts used to cover the AIG.

5.4.4 Experimental Results

In this section, we evaluate the factored form optimization methods for technology-independent

logic synthesis by showing the literal reductions and the results after technology mapping. We

propose a resynthesis script called compress2ff for factored form optimization. This script has

the same commands as compress2rs in ABC [132], but each command is modified to minimize

FFLC rather than the node count. The two scripts have roughly the same runtime because the

FF literal counting has negligible runtime overhead.

We set up our experiments for the manipulation of optimized designs for size and literal

reduction before technology mapping. When performing technology-independent synthesis,

we compare the new script to compress2rs, which is the default script in ABC for high-effort

AIG size minimization [132]. Our baseline consists of two runs of compress2rs to obtain the

initial compact representation of the AIG. Then, we create two flows: one running compress2rs

two times, and the other running compress2ff two times. Finally, for technology mapping, we

use &nf -R 1000 in ABC for area-oriented mapping. We use ASAP7 [44] as the target standard

cell library.

Table 5.6 shows the experimental results for the designs from the IWLS’05 benchmark

suite [85]. Our methods reduce the AIG size, factored form literal count (FFLC), and area

by 1.6%, 2.3%, and 2.8%, respectively, compared to the baseline. Instead, the flow that runs

compress2rs has a limited improvement of only 0.6% in the AIG size, FFLC, and area compared

to the baseline. In this experiment, we used a strong baseline to evaluate our methods. Even so,

146

5.4 Factored Form Literals Optimization

Table 5.6: Experimental results for factored form literals optimization and technology mapping

Benchmark Baseline: 2×compress2rs ABC: 2×compress2rs Factored form opt: 2×compress2ff
Size FFLC Depth Area Delay Size FFLC Depth Area Delay Size FFLC Depth Area Delay

ac97_ctrl 10203 13039 10 7012.21 100.42 10145 12971 10 6976.53 99.33 10175 12979 10 6831.41 109.19
aes_core 19493 24738 23 14012.98 245.4 19167 24511 24 13864.05 244.74 19210 23972 23 13702.23 233.87
des_area 4274 5177 32 2835.45 295.91 4263 5162 32 2825.57 295.63 4255 5093 32 2856.12 289.84
des_perf 67904 99730 28 60836.15 292.37 67141 99000 28 60431.14 287.44 67145 95820 30 59012.16 294.43
DMA 21974 26614 26 14254.06 240.5 21954 26589 26 14242.05 253.43 21358 25706 26 13533.02 247.11
DSP 37559 47734 100 26216.06 958.63 37068 47187 103 25927.76 998.47 36849 46561 98 25573.38 866.02
ethernet 55708 69226 34 35478.61 427.08 55659 69160 34 35482.25 441.46 55600 69011 34 35382.93 435.39
i2c 858 1136 19 648.46 188.32 849 1124 19 642.85 188.32 832 1087 19 604.65 188.32
mem_ctrl 7983 10410 44 5717.15 417.43 7881 10303 46 5675.89 458.48 7815 10150 45 5624.12 385.83
pci_bridge32 16092 20628 46 11262.44 505.24 16077 20616 46 11252.62 505.24 16014 20477 47 11210.79 556.1
RISC 60048 75005 100 40591.26 1055.71 59723 74631 105 40332.13 1034.93 59012 73260 101 39634.05 1126.49
sasc 546 729 9 430.9 101.77 546 729 9 430.9 101.77 542 722 9 426.24 108.77
simple_spi 732 961 19 548.09 154.85 731 960 20 548.05 155.43 728 950 19 544.11 187.98
spi 3112 3797 32 2096.5 303.82 3070 3736 32 2062.54 307.17 3055 3692 31 2035.31 294.66
ss_pcm 389 497 9 301.26 70.78 389 497 9 301.26 70.78 389 497 9 298.22 70.78
systemcaes 9582 11542 38 7002.48 426.35 9548 11444 40 7007.27 453.54 9307 11157 38 6512.72 423.49
systemcdes 2276 3252 28 1872.14 333.19 2256 3231 28 1851.12 290.58 2164 3061 27 1727.16 309.89
tv80 6856 8603 48 4752.52 417.16 6768 8507 53 4664.8 456.63 6506 8158 49 4449.26 411.61
usb_funct 12582 16145 36 8920.83 329.01 12509 16059 41 8854.99 374.44 12482 15986 41 8801.6 407.19
usb_phy 347 524 10 307.72 104.98 347 524 10 307.72 104.98 346 512 10 297.72 104.98
vga_lcd 88633 112806 35 59943.02 353.96 88628 112802 35 59933.86 346.89 88616 112747 35 59755.3 339.89
wb_conmax 37146 43041 18 20746.44 195.03 36640 42338 18 20442.97 213.27 36258 41476 20 20144.39 193.95

Geomean 7508.1 9662.5 27.3 5382.8 273.8 7460.1 9605.6 27.9 5351.4 278.8 7387.8 9435.6 27.7 5232.7 278.3
Ratio 1.000 1.000 1.000 1.000 1.000 0.994 0.994 1.023 0.994 1.018 0.984 0.977 1.013 0.972 1.016

our approach enables further improvement showing the importance of FFLC optimization. For

a fair comparison, our script mirrors compress2rs without exploring other FFLC optimization

opportunities.

Generally, some designs respond to the FFLC optimization better than others. The opti-

mization can lead to a significant improvement in the literal count, AIG size, and area after

mapping for some benchmark, such as DMA, i2c, systemcaes, systemcdes, and tv80. For in-

stance, our approach reduces the area of systemcaes by 7%. For other benchmark, our flow

does not lead to significantly better results, compared to the standard flow, such as in des_area,

ethernet, and vga_lcd. We noticed that our approach is more effective for control and random

logic. On the other hand, arithmetic circuits are less impacted by the proposed optimization

due to structural regularity. We expect better results with richer standard cell libraries, which

can map large factored forms better.

5.4.5 Applications

Logic Optimization

In the previous section, we presented novel optimization algorithms to reduce the FF literal

count in combinational logic, aiming at improving the area after technology mapping into

standard cells. The positive impact of the proposed FF-based network optimization on the

CMOS implementation offers new opportunities to restructure combinational logic repre-

sented as an AIG while preparing it for technology mapping. While size is currently the main

measure of the graph complexity for the area, we found that the literal count is a powerful

metric to guide fine-grain optimization leading to better quality after mapping. It is expected

that deploying the aforementioned methods as part of an industrial synthesis flow would

147

Chapter 5 . Mapping for Logic Synthesis

a c

b d

Z

a b

c d

PU = ab + cd

PD = (a +b)(c +d)

Figure 5.7: CMOS network for function Z = (a +b)(c +d) and the respective pullup (PU) and
pulldown (PD) networks.

improve power, performance, and area.

Transistor-level synthesis

The literal count in FFs is a well-known proxy for transistor count in CMOS transistor networks.

Transistor count is a fundamental measure that strongly correlates with area. Even if transistor

count alone does not capture other important factors affecting area and power, such as

transistor ordering, placement, and routing, it is one of the best estimator for area. In particular,

FFs describe the serial-parallel connection of transistors. A serial connection is described

using an AND gate. A parallel connection is described using an OR gate. This relation allows

us to generate CMOS transistor networks from factored forms. Since the pulldown and pullup

networks in CMOS are complementary, two FFs are needed, one being the dual of the other.

Example 5.4.6. Figure 5.7 illustrates the mapping of function Z = (a +b)(c +d), in factored

form, into a transistor network consisting of the pulldown network PD = (a +b)(c +d) and its

dual pullup network PU = ab + cd. ▲

Since an AIG can contain many FFs, it naturally describes the connection of transistors

in a multi-stage network. Using this relation, we can extract a transistor-level network after

minimizing the inverters and mapping each FF into CMOS using the natural translation of

factored forms, or using other methods [122, 162]. This property opens up to transistor-level

synthesis offering flexibility in functionality, not restricted by standard cell libraries, and

compact layout from automated transistor-level placement and routing approaches[103, 111].

In particular, the methods discussed in this work enable efficient transistor-level optimization

and synthesis for large designs while working directly on an AIG representation thanks to

148

5.5 Summary

the correlation between the number of literals and transistors. For instance, the proposed

methods find the best transistor networks implementing multiple-input XORs, by constructing

a multi-stage network of 2-input XORs, and many other cells.

Example 5.4.7. For the Booth partial product function our approach optimizes and translates

the function into a transistor-level network with 34 transistor after employing our patented

factored form-based mapper. The transistor-level network generated is not included in the

ASAP7 standard cell library [44]. It is a custom implementation at the transistor level assuming

a pullup/pulldown network structure, as shown in Figure 5.7, and transistor stacking limits.

Instead, if we map the function directly to the ASAP7 standard-cell library [44] while minimizing

area, the resulting netlist consists of 40 transistors. This means that our approach generates

a 15% reduction in transistor count for the Booth partial product implementation, which

generally translates into a similar amount of area reduction after transistor placement and

routing. ▲

Our preliminary tests on transistor-level synthesis show that some useful transistor-level

networks are not included in the ASAP7 standard cell library. The layout creation of those

transistor-level networks and integration in an industrial flow is beyond the scope of this work,

but these problems have been addressed in two patents, see [203, 213].

5.5 Summary

This chapter focused on modern technology-independent logic synthesis. In the first part,

motivated by the need for advanced logic synthesis tools that leverage multiple graph repre-

sentations, we proposed a technology mapping approach to logic optimization. We presented

a versatile method for performing graph mapping from one representation to another while

optimizing for circuit size or depth. When the target representation matches the starting

one, it performs global logic restructuring. Graph mapping uses a database of structures of

the target representation, extracted using SAT-based exact synthesis, as a library for map-

ping. We tested this approach for logic optimization on multiple logic representations. In

MIG optimization, we demonstrated an average reduction in the number of majority gates

by 32.11%, an additional 10% improvement compared to the best state-of-the-art rewriting

methods. Our method also achieved significant results in XAG optimization, with an average

gate reduction of 27.58%. Furthermore, we compared our method against the state-of-the-art

rewriting method for XMGs, achieving a 27.45% reduction in the size/depth product. In the

second part, we addressed don’t care-based optimization on non-conventional graph repre-

sentations for which high-quality resynthesis heuristics are not available, such as MIGs. We

presented how to perform scalable graph mapping and logic rewriting while leveraging don’t

care conditions. We proposed methods for fast Boolean matching with don’t cares and don’t

care extraction in cut-based algorithms. In MIG synthesis, we demonstrated that this method

reduces the number of majority gates by up to 14.32%, with an average reduction of 4.31%

compared to the state-of-the-art MIG flow. Additionally, we presented the best-known results

149

Chapter 5 . Mapping for Logic Synthesis

for MIG synthesis on the EPFL benchmark suite, showing that logic rewriting with don’t cares

is responsible for most of the best results on arithmetic circuits. In the third part of this chap-

ter, we revisited optimization based on factored form literal count (FFLC) with applications

is design flows for standard cells and transistor-level synthesis. We studied the connection

between AIG optimization and FFLC optimization, highlighting differences and analogies.

Then, we formalized the FFLC optimization problem over the AIG and proposed several AIG

optimization algorithms that minimize the FFLC count instead of the number of AIG nodes.

We introduced the first approach to address FFLC optimization at the global logic-network

level. We demonstrated that a flow combining conventional AIG optimization with AIG-based

FFLC optimization improves the area of a design flow for standard cells by 2.8% on average

after technology mapping. Additionally, we discussed applications in transistor-level synthesis

and automatic standard-cell creation.

150

6 Specializing Synthesis for Supercon-
ducting Technologies

The previous chapters of this thesis were dedicated to technology mapping algorithms for

established technologies and to technology-independent logic synthesis. This chapter focuses

on synthesis for advanced emerging technologies based on superconductivity. Supercon-

ducting electronics (SCE) stands out as one of the most promising post-CMOS technologies,

offering high-speed computation and power-efficient solutions. Despite being based on

switching logic, numerous differences between SCE and CMOS necessitate specialized tools

for synthesis and technology mapping. Specifically, two SCE constraints complicate the

design flow: path balancing and fan-out branching. To satisfy the path-balancing and fan-

out-branching requirements, technology mapping for SCE needs to insert delay registers

and splitters. However, the potentially large number of these additional elements introduces

further optimization challenges in SCE. This chapter proposes logic synthesis and technol-

ogy mapping algorithms tailored for SCE, focusing on the two most mature logic families,

namely the adiabatic quantum-flux parametron (AQFP) and the single-flux quantum (SFQ).

Specifically, this chapter presents: (i) depth-optimal technology mapping algorithms for AQFP

circuits; (ii) a post-mapping optimization algorithm for AQFP circuits based on minimum-

register retiming; (iii) a logic synthesis and technology mapping framework for SFQ circuits

based on the xor-and graph (XAG) representation. The content of this chapter is largely based

on the publications in [110, 194, 195].

The remainder of this chapter is organized as follows. First, Section 6.1 presents the

motivations of this chapter and Section 6.2 introduces the relevant background on SCE. Then,

Section 6.3 presents two depth-optimal technology mapping algorithms for AQFP circuits that

satisfy the path-balancing and fan-out-branching constraints. Additionally, it proposes a post-

mapping optimization algorithm to recover area after technology mapping. The experimental

results show that our approach reduces the number of delaying registers (buffers) and splitters

up to 14% compared to the state of the art while guaranteeing optimal depth. Additionally,

results demonstrate the scalability of these methods on circuits that are 10 to 100 times larger

than the designs that any other related work could handle. Next, Section 6.4 presents a

logic synthesis and technology mapping framework for SFQ circuits. It proposes a synthesis

151

Chapter 6 . Specializing Synthesis for Superconducting Technologies

flow consisting of multiple delay-driven algorithms working with the xor-and graph (XAG),

which efficiently abstract the SFQ logic primitives. The experimental results show an average

reduction in the area and delay of 43% and 34%, respectively, compared to state of the art.

Finally, Section 6.5 concludes and summarizes this chapter, highlighting the key findings and

contributions.

6.1 Motivation

Recent advances in semiconductor electronics are pushing CMOS technology close to its

physical limits. CMOS technology is experiencing higher fabrication costs and challenges

in further downscaling transistor dimensions, with limited improvements in energy con-

sumption and speedup. Additionally, with the increasing need for data management, storage,

high-performance computing, and cloud computing, data centers surpassed 1% of the world’s

energy consumption in 2018, and their demand is predicted to grow significantly in the fu-

ture [86]. Consequently, data centers and computing clusters contribute noticeably to global

energy consumption, necessitating more energy-efficient computation paradigms. Environ-

mental protection requirements motivates the research into power-efficient electronics, the

so-called green electronics. Physical limitations of CMOS, such as heat generation, support the

recent interest in power-efficient technologies based on superconducting electronics (SCE).

Superconducting electronics offers effective solutions to the challenges faced by modern

CMOS systems, such as stagnating clock frequencies and prohibitive power density. SCE

systems can achieve up to 100× lower operating power and 10-100× higher clock frequen-

cies than CMOS [78, 89]. Additionally, SCE systems operate at cryogenic temperatures with

millivolt-level signals, producing minimal noise. Whereas this chapter focuses exclusively on

digital superconducting electronics, superconducting sensors and communication primitives

can also be realized. These advantages have led to SCE applications in areas such as high-

resolution sensors for medical and scientific measurements, fast signal processing for wireless

communications, and interfaces for quantum computing with superconductive qubits. How-

ever, the real potential for SCE electronics lies in applications for data centers and computing

clusters.

Superconducting electronics operates at few degree Kelvin (typically 4K), where resistive

effects can be neglected and are based on the Josephson junction (JJ), consisting of supercon-

ductors separated by a barrier. Modern SCE technologies are based on two major supercon-

ductive effects, namely, Josephson effect and magnetic flux quantization. The most mature

superconducting logic family leveraging the Josephson effect is the rapid single-flux quan-

tum (RSFQ) [119], developed in the late 80s. Meanwhile, the most advanced logic family lever-

aging the magnetic flux quantization is the adiabatic quantum-flux parametron (AQFP) [218].

Both logic families are addressed in this chapter. For further details on SCE, EDA for SCE, and

its history, we refer the reader to [18, 20, 119].

Despite successful applications, the scope of SCE applications remains narrow compared

152

6.2 Preliminaries

to its potential. Most circuits have been designed with significant human intervention. To fully

realize the benefits of this technology by scaling up circuit complexity, new electronic design

automation (EDA) tools are required. Conventional EDA tools for CMOS are not suited for SCE

due to fundamental differences between the two technologies. One of the most important

differences in these technologies is that logic evaluation at each gate is triggered by a clock

signal, due to the unique nature of SCE of representing zeros and ones. Consequently, the

inputs at a gate must be available in specific timeframes for the computation to be correct.

This often requires the use of delaying registers on certain circuit paths. In literature, this

problem is referred to as path balancing. Another key difference is the poor driving capacity of

SCE gates, due to the small currents involved. This limitation requires the addition of special

gates called splitters to the logic, which distribute signals to multiple destinations without

degrading the signal integrity. In literature, this problem is referred to as fan-out branching.

Despite the advances in logic synthesis for SCE, the number of delaying registers required

for path balancing and splitters can be prohibitively large, often contributing to 50% of the

total area and energy consumption [13, 35, 88, 148]. This significantly degrades the efficiency

and yield of superconducting integrated systems. This challenge motivates our research

into EDA solutions for superconducting electronics. Specifically, we focus on the problem of

technology mapping, which is more complex than the one for CMOS due to the additional

requirements of path balancing and fan-out branching.

In Section 6.2, we introduce the two most mature SCE logic families: the adiabatic

quantum-flux parametron (AQFP) and the single-flux quantum (SFQ), along with their fea-

tures and constraints. Next, Section 6.3 focuses on technology mapping for AQFP circuits.

Specifically, we address the problem of satisfying the path balancing and fan-out branching

constraints during technology mapping. In this regard, we propose a fully automatic tech-

nology mapping flow that solves this problem guaranteeing optimal circuit depth. Then, in

Section 6.4, we present a comprehensive framework for synthesizing and optimizing SFQ

circuits. This includes algebraic and Boolean optimization techniques on the bases {AND, XOR,

NOT} (xor-and graph (XAG)), which closely abstract the logic primitives of the SFQ technology,

and a technology mapping method to satisfy the path-balancing and fan-out constraints.

6.2 Preliminaries

In this section, we present the two most advanced superconducting logic families: the adi-

abatic quantum-flux parametron (AQFP) and the single-flux quantum (SFQ). Additionally,

we focus on formalizing the path balancing and fan-out branching, which differ in the two

technologies.

153

Chapter 6 . Specializing Synthesis for Superconducting Technologies

c

b

a

S

S

S 〈〉

〈〉

B B

S

B

〈〉

B

sum

carry

Figure 6.1: An AQFP full adder circuit. Splitter cells (squares labeled S) are used to drive
multiple fan-out; 3-input majority cells (circles labeled 〈〉) realize the desired logic function;
dashed edges indicate an inverted connection; and buffers (squares labeled B) path-balance
the circuit. Compared to a MIG realization, the circuit depth increases by two due to splitter
cells.

6.2.1 Adiabatic Quantum-Flux Parametron

The adiabatic quantum-flux parametron (AQFP) is a superconducting logic family that targets

low-energy consumption. In an AQFP circuit, instead of transistors, Josephson junctions (JJs)

are the active components. In this technology, adiabatic switching operations drastically

reduce the dynamic power consumption compared to other superconducting logic families,

and achieve zero static power consumption [191]. AQFP circuits operate at frequencies up to

10 gigahertz with a power dissipation of two orders of magnitude lower compared to CMOS,

when accounting also for the cryo-cooling energy [14, 42].

The basic circuit components in AQFP are the buffer cell and the branch cell. A majority-3

logic gate can be constructed by combining three buffer cells with a 3-to-1 branch cell, from

which other logic gates, such as the AND gate and the OR gate, can be built with constant

cells (biased buffer cells). Input negation of logic gates is realized using a negative mutual

inductance and is of no extra cost [192]. The commonly used cost metric of AQFP circuits is

the JJ count. A buffer requires two JJs, a branch cell is of no JJ cost, and a logic gate based on

majority-3 costs six JJs [192].

In AQFP circuits, due to a different encoding of the information compared to CMOS, each

logic gate needs an alternating excitation current that periodically releases and resets the

computation [189]. The excitation current is delivered as a clock [190]. Thus, data at each gate

must be present at specific time frames for correct functionality. This may require the insertion

of clocked buffers such that all data paths at each gate’s fan-in have the same length. This

design constraint is called path-balancing. Logic gates also have limited driving capabilities.

Branching elements called splitters are necessary for multiple fan-outs to amplify the output

current. A splitter cell is composed of a buffer cell and a 1-to-n branch cell (usually, 2 ≤ n ≤ 4)

and is also clocked. As the cost of splitters comes mostly from the buffer cells, in this chapter,

we do not distinguish buffers from splitters and we will model them with the same abstraction.

This second design constraint is called fan-out-branching.

To illustrate the AQFP technology constraints, Figure 6.1 shows a full adder implemented

as an AQFP circuit that satisfies the path-balancing and fan-out-branching requirements.

154

6.2 Preliminaries

Splitters (S squares) are inserted to drive multiple gates and buffers (B squares) are used to

balance paths at the inputs of all gates and over all outputs.

Path-balancing and fan-out-branching constraints complicate the design process and

significantly affect area and delay. In some applications, buffers and splitters (B/S) may occupy

half of the total area even after optimization [13, 33, 35, 107, 126, 195]. Hence, developing EDA

tools able to minimize the number of buffers and splitters is of primary importance. Existing

work considered AQFP constraints during logic optimization to reduce imbalances and high-

fan-outs by modifying the logic [33, 126, 204]. Other previous work developed techniques to

insert and minimize the number of buffers and splitters needed in an AQFP circuit after logic

synthesis [35, 80, 107].

In Section 6.3, we propose technology mapping algorithms for inserting buffers and

splitters with depth-optimality guarantees, thereby satisfying the path-balancing and fan-

out-branching requirements. Additionally, we describe a post-mapping algorithm based on

minimum-register retiming to optimize the number of buffer and splitters after the initial

insertion.

6.2.2 Single-Flux Quantum

Rapid Single-Flux Quantum (RSFQ) is a fast and energy-efficient superconducting logic fam-

ily [119] that operate at a few degrees Kelvin (typically 4K) where resistive effects are negligible.

The particularity of the RSFQ technology is that it is based on pulsing logic utilizing Josephson

junctions (JJs) as the primary switching elements. The switching speed of Josephson junctions

supports the realization of RSFQ circuits clocked up to several tens of Gigahertz [89] with a

considerably lower power consumption compared to CMOS, even considering the refriger-

ation power [78]. Different variants of RSFQ logic have been proposed in the literature to

improve the energy efficiency, such as the energy-efficient single-flux quantum (eSFQ, [149]),

reciprocal quantum logic (RQL, [76]), and low-voltage RSFQ (LVRSFQ, [193]). In this chapter,

we refer to all the variants of this technology as SFQ.

Unlike CMOS, SFQ circuits encode the logic “true” in a small voltage pulse and the logic

“false” in a pulse absence. Consequently, most SFQ logic gates are clocked to discern between

these two states. Furthermore, SFQ gates necessitate a bias current, provided by a bias network,

to be able to switch correctly. SFQ logic gates function as latches, with a clock input and one

or more data inputs. When a pulse arrives at a data input, it alters the internal state of the

gate. Subsequently, a clock pulse resets the gate to its initial state and may generate an output

pulse based on the internal state. As SFQ circuits rely on the clock signal, they implement

gate-level pipelining. To ensure correct data propagation (to have data at each gate present at

specific time-frames for correct computations) SFQ circuits require delay registers (DFFs) in

the combinational paths so that every path from primary inputs to logic gates traverses the

same number of clocked gates. This constraint is referred to as path balancing. Additionally,

to enable gate-level pipelining, so that new data can be provided every clock cycle, primary

155

Chapter 6 . Specializing Synthesis for Superconducting Technologies

b

a
s

c

(a) CMOS circuit

b

a
s

c
s

s

s

(b) Equivalent RSFQ circuit

Figure 6.2: Mapping of a CMOS circuit (a) into a circuit in SFQ technology (b). First, each
CMOS gate is replaced by the corresponding clocked SFQ gate. Then, DFF cells are inserted
to satisfy the path-balancing constraint and to balanced POs. Finally, splitter cells (circles
labeled S) are used to drive multiple fan-outs. The circuit depth of the SFQ circuit in (b) is of 3
clock cycles.

output (PO) must also be balanced. Balanced POs are an important constraint in sequential

systems where the register-level clock is not a (slower) multiple of the gate-level clock.

Due to the quantized nature of SFQ pulses, most RSFQ primitives have a maximum driving

capacity of one gate. Consequently, special cells called splitters are necessary to drive multiple

fan-outs. This requirement is referred to as fan-out branching. In contrast with splitter cells in

AQFP technology, splitter cells for SFQ are asynchrounous, i.e., they do not need a clock signal.

This simplifies the design process of SFQ circuits. Additionally, SFQ splitters can drive only

two gates.

Cell libraries in SFQ technology typically comprise of a set of basic combinational blocks

that can be realized using JJs, splitters, mergers (by reversing the splitter cell), and loops [119].

These basic gates are the DFF, INV, AND2, OR2, and XOR2 [119, 159, 217] all of which require a

clock signal to function correctly. Besides the splitter, SFQ cell libraries often contain another

asynchronous cell called the confluence buffer (CB), or merger, which directs signals from

two input branches to one output. As for AQFP circuits, the commonly used cost metric of

SFQ area, prior to place and route, is based on the JJ count. Differently from AQFP circuits,

the delay is expressed as the maximum number of cycles required by the circuit to complete

its computation. This value corresponds to the length of the path that traverses the highest

number of clocked cells in the combinational logic. The clock frequency is typically neglected

before place and route as being hard to characterize [159].

156

6.3 Technology Mapping for AQFP Circuits

Table 6.1: Comparison between AQFP and SFQ logic families.

AQFP SFQ

Clock frequency Up to 5-10 GHz Up to several tens of GHz
Path balancing Clocked buffers Clocked DFFs
Fan-out branching Clocked splitters Asynchronous splitters
Gate driving capacity 1 1
Splitting capacity 1-to-n (usually, 2 ≤ n ≤ 4) 1-to-2
Gate library MAJ, constant AND2, OR2, XOR2, INV

Figure 6.2 shows the difference between a CMOS circuit and an equivalent SFQ circuit.

Notably, in Figure 6.2b gates are clocked and DFFs are inserted to satisfy the path-balancing

constraint. Specifically, a DFF is placed before the OR gate, and another one before the output

C . Last, splitter cells are inserted to drive multiple fan-outs.

In Section 6.4, we present a comprehensive exploration of methods for synthesizing

and optimizing SFQ circuits. Our approach includes algebraic and Boolean optimization

techniques based on the xor-and graph (XAG) representation of logic, a technology mapping

method to satisfy path balancing and fan-out constraints, and a synthesis flow for SFQ circuits.

6.2.3 Key Points

In this section, we briefly presented the two most mature logic families in superconducting

electronics. Their differences and similarities are summarized in Table 6.1. The adiabatic

quantum-flux parametron (AQFP) is a majority-based logic that supports clock frequencies

up to 5-10 gigahertz. Gates require an alternating excitation current that act as a clock. Hence,

circuits need to be path-balanced using clocked buffer gates. Gates cannot drive multiple

outputs without using a splitter, which is also clocked. Conversely, the rapid single-flux

quantum (RSFQ) is an AND-OR-XOR-based logic that supports clock frequencies up to several

tens of gigahertz. It represents zeros and ones using the absence or presence of a voltage

pulse. Consequently, gates are clocked to discern between the two states. Path balancing is

implemented using clocked DFF cells. Gates cannot drive multiple outputs without using a

splitter, which is an asynchronous gate.

6.3 Technology Mapping for AQFP Circuits

High-performance computing of data centers and computing clusters contributes to a no-

ticeable percentage of the world’s energy consumption, demanding more energy-efficient

computation paradigms. The adiabatic quantum-flux parametron (AQFP) is an emerging

superconducting technology shown to achieve promising energy efficiency [191] and has

attracted increasing attention in the past decade. While the technology is rapidly evolving [74,

174, 189, 190, 192] and larger-scale systems are being developed [14, 207], design automation

157

Chapter 6 . Specializing Synthesis for Superconducting Technologies

for AQFP is also an extensively researched topic [13, 129, 212].

One major challenge in AQFP design automation is the legalization of the logic circuit

to fulfill two unconventional technology constraints, path balancing and fan-out branching,

before physical design. Due to its gate-level clocking property, AQFP gates require all input

signals to arrive at the same time, thus buffers have to be inserted on shorter data paths to

balance the delay along the longer paths. Moreover, splitters are needed at the output of AQFP

gates driving multiple signals, and these splitters are also clocked. Thus, logic circuits gener-

ated by technology-independent logic synthesis must be legalized for the AQFP technology by

inserting buffers and splitters. Legalization of AQFP circuits is essential to unlock its potential

of pipelined computation while maintaining correct functionality.

In a legalized AQFP circuit, buffers and splitters (B/S) often contribute to over 50% of the

Josephson junction (JJ) count, which is the commonly used cost metric related to area as well as

energy consumption. Thus, optimization algorithms for AQFP legalization are important to re-

duce the overhead and increase scalability of AQFP circuits. In this work, we present a scalable

and flexible framework for AQFP technology legalization and optimization. First, we prove

that the depth-optimal B/S insertion problem is tractable with polynomial complexity. Next,

based on the formulation of the AQFP B/S insertion problem as a scheduling problem [105],

we propose depth-optimal scheduling algorithms, forming the basis for obtaining an initial

legalized circuit. Then, we present a heuristic optimization algorithm to further optimize the

B/S count based on minimum register retiming. Finally, we present an AQFP legalization and

optimization flow consisting of two depth-optimal schedules, iteratively optimizing them

separately, and then choosing the better one.

Our experiments demonstrate remarkable results:

1. We show a reduction in the number of buffer and splitters up to 14% compared to the

previous state-of-the-art scheduling-based B/S insertion algorithm in [105], with no

depth optimality guarantees. Additionally, we show a logic depth improvement up to

15%.

2. Compared to the current state of the art, we show competitive results that are depth

optimal. More importantly, we demonstrate that our approach can perform the B/S

insertion in a very short run time, making possible to use these methods in a design-

space exploration (DSE) engine. Additionally, we show that our method achieves near-

optimal quality as the state-of-the-art ILP-based algorithm within very little runtime in

small benchmarks.

3. We show that our methods are the first to scale to benchmarks that are 10 to 100 times

larger compared to typical benchmarks used in AQFP logic synthesis, more than any

other related work could handle.

158

6.3 Technology Mapping for AQFP Circuits

6.3.1 Preliminaries

In this section, we provide terminology and describe the technology mapping problem for

AQFP circuits. Additionally, we summarize previous work that formalizes the AQFP buffer and

splitter insertion problem as a scheduling problem.

Terminology

A (logic) network is a directed acyclic graph defined by a pair (V ,E) of a set V of nodes and a

set E of directed edges. The node set V = I ∪O ∪G is disjointly composed of a set I of primary

inputs (PIs), a set O of primary outputs (POs), and a set G of (logic) gates chosen from a library.

In this paper, we assume that an AQFP-compatible gate library (e.g., composed of AND2,

OR2, MAJ3, with optional input negation) is used. Each PI has in-degree 0 and unbounded

out-degree, whereas each PO has in-degree 1 and out-degree 0. The out-degree of each gate is

unbounded and the in-degree is a fixed number depending on the type of the gate. For any

gate g ∈G , the fan-ins of g , denoted as FI(g), is the set of gates and PIs connected to g on an

incoming edge. Similarly, the fan-outs of a gate (or a PI) g , denoted as FO(g), is the set of gates

and POs connected to g on an outgoing edge.

A mapped network N ′ is a network whose node set V ′ is extended with a set B of buffers.

A buffer is a node with in-degree 1. In a mapped network, the definition of the fan-out of a

gate is modified by ignoring any intermediate buffers, i.e., a path from a gate g to one of its

fan-outs go ∈ FO(g) ⊂ (G ∪O) may include any number of buffers in B , but never another gate.

The definition of fan-ins is modified similarly. The fan-out tree of a gate (or a PI) n, denoted by

FOT(n), is the set of buffers between n and any gate or PO in FO(n).

A schedule of a network is a function S : V →Z≥0 that assigns a non-negative integer S (n)

to each node n ∈V , called the level of n. The depth of a network N = (V = I ∪O ∪G ,E) with a

schedule S is defined as d(N) = maxo∈O S (o). If the schedule is omitted, then the depth of a

network is the length of the longest path from any PI to any PO.

Problem formulation

To fulfill the needs in the AQFP technology for fan-out-branching and path-balancing, we

define the following properties subject to the splitting capacities si = 1, sg = 1, and sb > 1 of

PIs, gates, and buffers, respectively.

Definition 6.3.1. Given a mapped network N ′ = (V ′ = I ∪O ∪G ∪B ,E ′),

159

Chapter 6 . Specializing Synthesis for Superconducting Technologies

1. N ′ is path-balanced if there exists a schedule S of N ′ such that

∀n1,n2 ∈V ′ : (n1,n2) ∈ E ′ ⇒S (n1) =S (n2)−1, (6.1)

∀i ∈ I : S (i) = 0, and (6.2)

∀o ∈O : S (o) = d(N ′). (6.3)

2. N ′ is properly branched if every PI has an out-degree no greater than si = 1, every gate

has an out-degree no greater than sg = 1, and every buffer has an out-degree no greater

than sb .

3. N ′ is legal if it is both path-balanced and properly branched.

In an AQFP design automation flow, the logic synthesis stage after RTL synthesis and before

physical design converts an input specification netlist (represented as, e.g., an AND-Inverter

Graph (AIG) or a Majority-Inverter Graph (MIG)) into a legal mapped network whose gates are

all AQFP-compatible. The problem to be solved is formulated as follows:

Problem 6.3.2 (AQFP technology mapping). Given a network N = (V = I ∪O ∪G ,E) with

unconstrained gate types in G, find a mapped network N ′ = (V ′ = I ∪O ∪G ′∪B ,E ′) such that:

1. N and N ′ are logically equivalent.

2. All gates in G ′ are of an AQFP-compatible type (i.e., AND2, OR2, or MAJ3 with optional

input negation).

3. N ′ is legal (i.e., path-balanced and properly branched).

Problem 6.3.2 may be solved as one problem, or it may be divided into two problems to be

solved independently:

Problem 6.3.3 (Majority-based logic restructuring). Given a network N = (V = I ∪O ∪G ,E)

with unconstrained gate types in G, find a network N∗ = (V ∗ = I ∪O ∪G∗,E∗), such that:

1. N and N∗ are logically equivalent.

2. All gates in G∗ are of an AQFP-compatible type (i.e., AND2, OR2, or MAJ3 with optional

input negation).

Problem 6.3.4 (AQFP technology legalization). Given a network N∗ = (V ∗ = I ∪O ∪G∗,E∗)

and the value of sb , find a mapped network N ′ = (V ′ = I ∪O ∪G ′∪B ,E ′), such that:

1. N ′ is legal (i.e., path-balanced and properly branched).

2. G ′ =G∗, and for all gates g ∈G∗, FO(g) and FI(g) remain the same in N ′ as in N∗.

160

6.3 Technology Mapping for AQFP Circuits

Moreover, for all three problems, in addition to finding a network fulfilling the require-

ments, we also optimize common metrics. For the main problem to solve, Problem 6.3.2,

common optimization objectives are minimizing the JJ count (#JJs = 6 · |G ′| + 2 · |B |) and

minimizing JJ depth d(N ′).

Problem 6.3.3 is equivalent to mapping into and optimizing a majority-inverter graph

(MIG) [5], which is a logic network where all gates are MAJ3 and edges may contain inverters,

because AND2 and OR2 gates are equivalent to MAJ3 with a constant (0 and 1, respectively)

input. Graph mapping [202] and MIG optimization [5, 104, 168, 196] are well-researched

problems with existing algorithms to use. These algorithms usually optimize the MIG size

(|G∗|) or depth (d(N∗)).

In Sections 6.3.3 and 6.3.4, we focus on solving Problem 6.3.4. Since G ′ =G∗, this problem

is often referred to as the AQFP buffer (and splitter) insertion problem. Minimizing JJ count in

Problem 6.3.2 is equivalent to minimizing |B | in Problem 6.3.4.

AQFP legalization as a scheduling problem

A close collaborator, Siang-Yun Lee, demonstrated that the AQFP legalization problem, or

buffer and splitter insertion problem, (Problem 6.3.4) can be seen as a scheduling problem

on the umapped network. In this subsection, we review Lee’s work on scheduling for AQFP

networks, as it forms the foundation for our contribution.

Once a schedule is given, the minimal-size mapped network can be derived in linear time

using an irredundant buffer insertion algorithm [105, 107, 110]. An irredundant mapped

network is defined as follows.

Definition 6.3.5. A mapped network is said to be irredundant if the following two conditions

hold.

1. There is no dangling buffer, i.e., every buffer has at least one outgoing edge.

2. There does not exist any pair of buffers whose incoming edges are connected from the

same splitter and both of them have out-degrees smaller than sb .

Otherwise, the network is redundant.

A schedule of the network is legal if and only if a mapping function f : (N ,S) → N ′ exists

such that buffers and splitters can be inserted respecting the path-balancing and fan-out-

branching constraints while maintaining each node n ∈V at the assigned level S (n) in the

schedule.

Algorithm 6.1 from [105] shows such function. For each PI or gate n, Algorithm 6.1 iterates

over all levels l between n and its fan-out. Initially, the set A contains the fan-outs (gates

161

Chapter 6 . Specializing Synthesis for Superconducting Technologies

Algorithm 6.1: Irredundant buffer insertion
Input: An unmapped network N∗ = (V ∗ = I ∪O ∪G∗,E∗) and a schedule S for N∗
Output: Legalized mapped network N ′

1 N ′ ← N∗
2 foreach n ∈ I ∪G∗ do
3 lmax ← max

no∈FO(n)
S (no)

4 A ← {no ∈ FO(n) : S (no) = lmax}
5 for l = lmax −1 downto S (n)+1 do

6 Create
⌈ |A|

sb

⌉
buffers at level l in N ′

7 B ← the set of newly created buffers
8 for i = 1 to |A| do
9 Remove n from A[i]’s fan-ins in N ′

10 Add B [⌈ i
sb
⌉] as A[i]’s fan-in in N ′

11 A ← B ∪ {no ∈ FO(n) : S (no) = l }

12 assert |A| = 1
13 Add n as A[1]’s fan-in in N ′

14 return N ′

and POs, if any) of n at the highest level lmax. At each level l , enough buffers (|B | = ⌈ |A|sb
⌉) are

inserted, where |A| is the number of nodes at level l +1. Then, gate n is removed from the

fan-ins of the i -th element in A, and the ⌈ i
sb
⌉-th buffer in B is added instead. Finally, A is

updated as the newly created buffers and the fan-outs at the current level.

Algorithm 6.1 runs in linear time with respect to
∑

n∈I∪G∗ |FO(n)| ≤ |E∗|. Moreover, the

constructed mapped network is irredundant because in each fan-out tree, only the minimum

number of buffers is inserted at each level l and only at most one of them has fan-out count

smaller than sb . An irredundant network is size-optimal with respect to the given schedule

because no buffer can be removed while keeping the network legal.

Given Algorithm 6.1, the AQFP legalization problem reduces to finding a legal schedule

that minimizes the number of buffers and splitters. In Section 6.3.3, we propose scheduling

algorithms for AQFP with depth-optimality guarantees.

6.3.2 Related Works

In this section, we introduce existing works solving the three problems formulated in Sec-

tion 6.3.1. We first present related work in MIG optimization, corresponding to Problem 6.3.3.

Then, we transition to AQFP technology mapping problems that tackle Problem 6.3.4. Finally,

we present the state-of-the-art approaches for Problem 6.3.2.

162

6.3 Technology Mapping for AQFP Circuits

Majority-inverter graph optimization

MIG was proposed as an alternative technology-independent logic representation with an

advantage in depth optimization, especially in arithmetic circuits [5]. Due to special properties

of some emerging technologies, including AQFP, MIG also become a good logic synthesis data

structure for these technologies [204]. Various logic synthesis and optimization algorithms

have been proposed and tailored for MIGs. To convert an AIG into an MIG, the simplest way is

to translate each AND2 gate into an MAJ3 gate with a constant 0 input. Alternatively, a versatile

graph mapping algorithm can also map from AIGs (or other types of networks) to MIGs while

optimizing for depth and/or size in the process [196, 202] (e.g., see Chapter 5). Prominent

examples of tailored MIG optimization algorithms include algebraic rewriting, which applies

special Boolean algebraic rules to reduce MIG depth [5], Boolean rewriting [196], and Boolean

resubstitution, which resynthesizes a small part of the network using majority gates to reduce

MIG size [104].

Buffer and splitter insertion and optimization

(Rapid) Single-Flux Quantum (RSFQ or SFQ) [119] is a sibling superconducting technology of

AQFP and has similar path-balancing and fan-out-branching constraints, thus also requiring

buffer and splitter insertion [88, 159, 194] (Section 6.4). However, a key difference between the

two technologies makes the problem computationally distinct for them: in SFQ, splitters are

not clocked and not considered in path balancing, so fan-out branching and path balancing

can be considered separately; whereas AQFP splitters are clocked, thus fan-out branching and

path balancing must be considered together to discover potential optimizations. The interplay

between buffers and splitters makes the B/S optimization problem for AQFP a challenging

one.

In the earliest AQFP design automation tools, legalization was done by first inserting

splitters (as balanced trees) at the output of all multi-fan-out gates, and then inserting buffers

on all imbalanced paths [212]. This was a rather naive approach that guaranteed the correct

operation of the AQFP circuit but often resulted in a large portion of JJ count taken by buffers

and splitters. Thus, a local optimization technique called retiming [13] or buffer merging [34]

was proposed. While this approach is called retiming, it does not perform global retiming,

or global optimization, but only moves buffers across a multi-fan-in gate or a multi-fan-out

splitter when locally convenient. For example, moving buffers from the fan-ins of a MAJ3 gate

to its fan-out reduces by three times the number of buffers (Figure 8 in [34]); alternatively,

moving buffers from the fan-outs of a splitter to its fan-in can be seen as sharing buffers or

delayed splitting and also reduces the buffer count (Figure 5 in [13]). This idea was elaborated

in [35] as a B/S insertion algorithm using the notion of virtual splitters.

Further improvements to the B/S optimization problem involving more sophisticated

algorithms were made in the following years. In [80], the authors attempted to localize the

optimization problem to a single wire and proposed a locally optimal algorithm subject to

163

Chapter 6 . Specializing Synthesis for Superconducting Technologies

a complex cost function involving maximum and total additional delay and the number of

B/S. The local insertion algorithm has a quadratic complexity. In [105], the authors formulate

the B/S insertion problem as a scheduling problem and propose algorithms based on the

as-soon-as-possible (ASAP) and as-late-as-possible (ALAP) strategies. This approach has a

linear complexity relative to the number of nodes but does not guarantee optimality in terms

of circuit depth or size. To optimize the number of B/S after the initial insertion, the authors

propose an algorithm to move chunks on logic up or down by reconstructing splitters and

moving buffers. In [62], the authors proposed to first solve for a schedule of the mapped net-

work, formulated as an integer linear programming (ILP) problem with an objective function

estimating the B/S count, followed by another locally optimal splitter-tree insertion algorithm

subject to the same cost function defined in [80]. This local insertion algorithm has a cubic

time complexity.

Exact methods solving for the global size-optimal B/S insertion were also researched. In

[105], the B/S optimization problem was first formulated as a scheduling problem, encoded

as an optimization modulo linear integer arithmetic problem, and solved by a satisfiability

modulo theory (SMT) solver. The global minimum B/S insertion results were obtained for

some small benchmarks. Then, an ILP encoding was proposed in [125] which led to some

improvement in efficiency, and optimal results for more benchmarks were reported. However,

the exact methods remain applicable only to small or medium-size regular designs.

While previous heuristic work did not offer size or depth optimality guarantees, this

work introduces two B/S insertion algorithms that ensure depth optimality. Additionally, we

propose an optimization method for B/S based on global register retiming.

AQFP logic synthesis

Existing AQFP logic synthesis flows can be categorized into two approaches: solving Prob-

lem 6.3.3 and Problem 6.3.4 separately, or considering Problems 6.3.3 and 6.3.4 together. The

earliest works took the first approach to adapt available CMOS-based design automation tools

for AQFP [13, 212]. Problem 6.3.3 was addressed by AND-based technology-independent

logic synthesis followed by technology mapping into an AQFP-compatible library, and Prob-

lem 6.3.4 was solved separately in an additional buffer insertion stage before physical design.

Later, to better leverage the intrinsic MAJ function in AQFP circuits, MAJ-based logic synthesis

was adopted [34, 204]. At this time, Problem 6.3.4 was still solved separately using the naive

insertion approach.

Although solving the two problems separately is easier, it is hard to predict the impact

of legalization in the logic restructuring stage. The smallest MIG in size may not be still the

smallest after legalization. Thus, in [126], the authors proposed to consider the two problems

together and optimize directly for the final cost function. A database of optimal AQFP sub-

circuits is used in restructuring, and legalization is done during the process. This algorithm

was used in a flow consisting of graph mapping, AQFP resynthesis, and post-synthesis buffer

164

6.3 Technology Mapping for AQFP Circuits

optimization [129].

The latest work on AQFP synthesis [110], presenting currently the best results, took the

first approach (separating the two problems) and used a design-space exploration engine

to find the best AQFP by combining MIG optimization (including the methods proposed in

Chapter 5) to the B/S algorithms proposed in [105] and this chapter.

6.3.3 Depth-Optimal Buffer and Splitter Insertion

This section presents our first contribution, which proposes how to efficiently approach

Problem 6.3.4. As discussed in Section 6.3.1, common cost metrics to be considered for AQFP

circuits are network size and depth. Unlike in many other technologies where circuit area and

delay are often inversely related in a Pareto curve and engineers must trade one for the other,

we observe that in the AQFP buffer insertion problem, the size of an irredundant mapped

network correlates with the depth of the provided schedule. Intuitively, in Problem 6.3.4, the

unmapped network and any mapped network have roughly the same number of paths and

similar logic sharing (slight differences may only exist in how fan-outs are split), and the size of

a mapped network is the sum of all path lengths, which depends on the network depth and the

sizes of the shared cones. In other words, a larger network depth results in longer (balanced)

paths and thus larger network size due to the presence of more buffers. This motivates us to

present scheduling algorithms that also optimize for depth besides being fast (having a linear

time complexity) and giving legal results.

In this section, we present depth-optimal buffer and splitter insertion algorithms, based

on the well-known As-Soon-As-Possible (ASAP) and As-Late-As-Possible (ALAP) scheduling

strategies. Following [105], we formulate the AQFP technology legalization problem as a

scheduling problem. These methods provide a legal schedule for an unmapped network,

allowing the derivation of an irredundant legal mapped network using Algorithm 6.1. These

algorithms are designed to serve as quick initial scheduling methods, which will undergo

further optimization to reduce the number of B/S elements (Section 6.3.4).

This section is organized as follows. We begin by presenting a depth-optimal algorithm

that assigns a node to a level in the schedule, ensuring that its fan-out tree is of minimum

height. Next, we introduce two algorithms to compute a schedule based on the ALAP and

ASAP scheduling strategies.

Depth-optimal scheduling

Given a partial schedule S where some nodes, including node n but excluding all fan-outs

of n, have not been assigned a level, Algorithm 6.2 computes the value to be assigned to

S (n), such that the fan-out tree of n has the minimum-possible height. Variable edges counts

the number of nodes (thus edges) needed to be connected at each level; variable splitters

computes the number of splitters (buffers) needed at each level. The foreach-loop (lines 3 to

165

Chapter 6 . Specializing Synthesis for Superconducting Technologies

Algorithm 6.2: Depth-optimal single node scheduling
Input: A node n and a partial schedule S

Output: Level S (n) assigned to node n
1 lprev ← max

no∈FO(n)
S (no)

2 edges ← 0
3 foreach no ∈ FO(n) in a descending order of l ←S (no) do

4 splitters ←
⌈

edges

s
(lprev−l)

b

⌉
5 edges ← splitters +1
6 lprev ← l

7 while edges ̸= 1 do

8 edges ←
⌈

ed g es
sb

⌉
9 lprev ← lprev −1

10 S (n) ← lprev −1
11 return S (n)

6) iterates over the fan-outs of n in descending order of their levels, and variable lprev keeps

the level of the previous iteration. If the level does not change from the previous to the current

iteration, variable splitters is equal to edges because lprev = l and sb
0 = 1 (line 4). As a result,

edges is simply increased by 1 in this iteration, counting the fan-out itself (line 5). Otherwise,

when a fan-out at a lower level is encountered, we compute the minimum number of buffers

needed at level l to drive edges nodes at level lprev as follows. A complete binary tree of height

h has at most 2h leaves. Similarly, a splitter tree rooted at level l can split into at most sb
h

fan-outs at level l +h. To drive edges fan-outs at level lprev, at least

⌈
edges

s
(lprev−l)

b

⌉
splitter trees

rooted at level l are needed (line 4). Moreover, at most one of them is not full, i.e., they are

irredundant. In line 5, this value, plus one for the fan-out node itself, is used to update variable

edges. Finally, after all fan-outs of node n have been processed, the algorithm finds the highest

level where edges is one to schedule n (lines 7 to 10).

Example 6.3.6. Figure 6.3 shows an example to illustrate Algorithm 6.2. The node n to be

scheduled has four fan-outs, assigned respectively to levels 8 (n1, n2, n3) and 7 (n4) in the partial

schedule. The splitting capacity is sb = 2. In Figure 6.3, edges(v,l) indicates the value of variable

edges in Algorithm 6.2 when node nv at level S (nv) = l is considered in the foreach-loop (lines

3 to 6). First, edges(1,8) = 1, edges(2,8) = 2 and edges(3,8) = 3 are computed, essentially counting

the number of fan-outs at level l = 8. When node n4 at a lower level, l = 7, is encountered, the

number of buffers needed at level 7 to drive all nodes at the previously considered level lprev = 8 is

computed by ⌈3/28−7⌉ = 2. The loop ends with lprev = 7 and edges = 3. Finally, in the while-loop

(lines 7 to 9), edges is updated two times before it reaches value 1, resulting in lprev = 5. Thus,

node n is scheduled at S (n) = 4. ▲

With the following Lemma, we show that the computation in line 4 of Algorithm 6.2 has

the equivalent effect of iterating the splitter counting splitters ←
⌈

edges
sb

⌉
for lprev − l levels, as

in line 6 of Algorithm 6.1.

166

6.3 Technology Mapping for AQFP Circuits

l = 4

l = 5

l = 6

l = 7

l = 8

edges =
⌈

2
2

⌉
= 1

edges =
⌈

3
2

⌉
= 2

edges(4,7) =
⌈

3
2

⌉
+1 = 3

edges(3,8) = 3

edges(2,8) = 2,edges(1,8) = 1,

n

n1 n2 n3

n4

Figure 6.3: Example sub-network to illustrate Algorithm 6.2 with (sb = 2).

Lemma 6.3.7. Let b be a positive integer and A = a0, a1, . . . , an be a sequence of n +1 positive

integers related by ai+1 =
⌈ ai

b

⌉
,0 ≤ i < n. Then, an = ⌈ a0

bn

⌉
.

Proof. We first prove that for any positive integers a and b,
⌈ ⌈

a
b

⌉
b

⌉
= ⌈ a

b2

⌉
. Let x = ⌈ a

b ⌉, by

definition, we have
a

b
≤ x ⇒ a

b2 ≤ x

b
⇒

⌈ a

b2

⌉
≤

⌈ x

b

⌉
.

Suppose, for the sake of contradiction, that ⌈ a
b2 ⌉ < ⌈ x

b ⌉ (the equality is removed), then there

must exist an integer y such that a
b2 ≤ y < x

b . Multiplying by b and using y , we have

a

b
≤ b · y < x =

⌈ a

b

⌉
≤ ⌈

b · y
⌉= b · y < x,

which leads to the absurd statement x < x. Thus, by contradiction, ⌈ a
b2 ⌉ = ⌈ x

b ⌉ =
⌈ ⌈

a
b

⌉
b

⌉
and the

statement is proved by induction on i . ■

Next, we prove the legality and optimality of Algorithm 6.2 with the following theorem.

Theorem 6.3.8. Given a legal partial schedule S , Algorithm 6.2 assigns the largest level to

S (n) such that S is still legal.

Proof. Let the value returned by Algorithm 6.2 be ln and assume, for the sake of contra-

diction, a schedule S ′ where S ′(no) = S (no) ∀no ∈ FO(n) and S ′(n) = l ′n > ln . Let lm =
minno∈FO(n) S (no). If l ′n ≥ lm , S ′ is obviously illegal. Assume l ′n < lm . Let e be the value of

variable edges when the foreach-loop in Algorithm 6.2 (lines 3 to 6) ends. The while-loop in

Algorithm 6.2 has lm − ln −1 iterations, so the value of variable edges before the last iteration

is, by Lemma 6.3.7,
⌈

e/s(lm−ln−2)
b

⌉
> 1.

Now, consider an execution of Algorithm 6.1 using S ′, in particular the iteration of the

outer loop processing the considered node n, we have |A| = e after line 11 in Algorithm 6.1 in

the iteration l = lm − l ′n . The loop (lines 5-11 in Algorithm 6.1 has lm − l ′n −1 more iterations

before it ends, in which line 11 can be replaced by “A ← B” because there are no more fan-outs.

167

Chapter 6 . Specializing Synthesis for Superconducting Technologies

Algorithm 6.3: Depth-optimal ALAP scheduling
Input: An unmapped network N∗ = (V ∗ = I ∪O ∪G∗,E∗)
Output: A schedule S for N∗

1 λ← d(N∗) · (1+max
n∈V ∗⌈

log(|FO(n)|)
log(sb) ⌉)

2 foreach o ∈O do
3 Sλ(o) ←λ

4 foreach n ∈ I ∪G∗ in a reversed topological order do
5 Sλ(n) ← schedule_node(n, Sλ) ▷ Run Algorithm 6.2

6 lmin ← min
i∈I

Sλ(i)

7 foreach i ∈ I do
8 S (i) ← 0

9 foreach n ∈O ∪G∗ do
10 S (n) ←Sλ(n)− lmin

11 return S

By the end of the loop, |A| =
⌈

e/s
(lm−l ′n−1)
b

⌉
≥

⌈
e/s(lm−ln−2)

b

⌉
> 1. Thus, we conclude that S ′ is

illegal, and ln is indeed the largest possible value for S (n). ■

If all fan-outs of a node n are scheduled at the largest level, then the level of n obtained by

Algorithm 6.2 is also the largest. Formally, this is written as follows.

Corollary 6.3.9. Given a legal schedule S and a node n, let S (n) be the level of n computed by

Algorithm 6.2. If there does not exist a legal schedule S ′ such that maxo∈O S ′(o) = maxo∈O S (o)

and ∃no ∈ FO(n),S ′(no) > S (no), then there does not exist a legal schedule S ′ such that

maxo∈O S ′(o) = maxo∈O S (o) and S ′(n) >S (n).

Algorithm 6.2 requires that a node is only scheduled after all of its fan-outs have been

scheduled. In other words, a reversed topological order is required. Thus, it is suitable to use

an ALAP scheduling scheme, which first schedules all POs of a network to an upper bound λ,

and then schedules the remaining nodes to the largest-possible level (“as late as possible”) in

a reversed topological order. We present Algorithm 6.3 for this purpose. It first computes a

sufficiently large upper bound λ on the depth of the mapped network for ALAP scheduling,

assuming each node would need a balanced splitter tree to drive the maximum fan-out in

the network. POs are first scheduled at λ. Then, each node is scheduled using Algorithm 6.3

in a reversed topological order. Finally, to obtain a schedule independent of the value of λ,

post-scheduling correction is applied: PIs are moved to level 0 to fulfill Equation 6.2, and the

levels of all other nodes are reduced by the smallest PI level before correction. This algorithm

has a linear time complexity with respect to the network size.

168

6.3 Technology Mapping for AQFP Circuits

Depth-optimal ALAP scheduling

We have shown with Corollary 6.3.9 that the depth-optimal scheduling problem has optimal

substructure when nodes are scheduled in a reversed topological order. Now, we can prove

that Algorithm 6.3 achieves optimal depth.

Theorem 6.3.10. Given an unmapped network N∗, let the schedule for N∗ returned by Algo-

rithm 6.3 be S . The irredundant mapped network N ′, obtained by running Algorithm 6.1 with

N∗ and S as inputs, is legal and its depth d(N ′) is minimal.

Proof. At line 6 of Algorithm 6.3, the depth of schedule Sλ is maxo∈O Sλ(o) =λ by definition.

After the correction in lines 6-10, the maximum level becomes λ− lmin, which is also the

resulting depth d(N ′). Thus, minimizing depth d(N ′) is equivalent to maximizing the lowest

PI level lmin during scheduling because λ is a constant.

In Algorithm 6.3, levels of POs are maximized to λ. By Corollary 6.3.9, each node is

scheduled at the largest level because all of its fan-outs are scheduled before it and they are

also scheduled at their largest possible levels. By induction, levels of all nodes are maximized

and thus depth is minimized. The legality of S is similarly proved by Theorem 6.3.8. ■

In conclusion, Algorithm 6.3 guarantees to find a legal schedule for an unmapped net-

work. Followed by Algorithm 6.1, a legal mapped network is obtained in linear time. By

Theorem 6.3.10, such mapped network is depth-optimal.

Depth-optimal ASAP scheduling

The methods previously presented give a depth-optimal mapped network, but size optimality

is not guaranteed. Indeed, the AQFP size optimization problem is likely a difficult one without

an algorithm that is both optimal and has polynomial time complexity. Thus, we propose to

use depth-optimal networks as starting points and further optimize for size with heuristic

algorithms presented in Section 6.3.4. As heuristics are often biased by the starting point,

we present in this section an alternative depth-optimal scheduling method based on ASAP

instead of ALAP scheduling.

An ASAP scheduling scheme schedules each node, in a topological order, to the lowest-

possible level according to the schedule of its fan-ins. To do so, we define a mobility function

µ : V ∗ →Z≥0 representing the maximum negative displacement that can be made to a node

(from SALAP(n) to SASAP = SALAP(n) −µ(n)) while keeping the schedule legal and depth-

optimal. Algorithm 6.4 computes (a lower bound on) the mobility of each node and uses these

values to obtain an ASAP schedule using a given ALAP schedule.

Mobility is initialized to infinite for gates and to 0 for PIs (lines 1-4). For each node n in

topological order, first, n is scheduled to a lower level based on its ALAP schedule and mobility

169

Chapter 6 . Specializing Synthesis for Superconducting Technologies

Algorithm 6.4: Depth-optimal ASAP scheduling
Input: An unmapped network N∗ = (V ∗ = I ∪O ∪G∗,E∗) and its ALAP schedule SALAP

Output: ASAP schedule SASAP for N∗
1 foreach i ∈ I do
2 µ(i) ← 0

3 foreach n ∈G∗ do
4 µ(n) ←∞
5 SASAP ←SALAP

6 foreach n ∈G∗ in a topological order do
7 SASAP(n) ←SASAP(n)−µ(n)
8 foreach no ∈ FO(n) do
9 T (no) ← 0

10 lprev ← max
no∈FO(n)

SASAP(no)

11 edges ← 0
12 foreach l =S (no) : no ∈ FO(n) in descending order do
13 mobility ← 0
14 for lprev − l iterations do
15 if edges = 1 then
16 mobility ← mobility +1

17 edges ←⌈ edges
sb

⌉
18 foreach n′

o ∈ FO(n) : S (n′
o) > l do

19 T (n′
o) ← T (n′

o)+ mobility

20 edges ← edges +1
21 lprev ← l

22 mobility ← 0
23 for l =SASAP(n) upto lprev −2 do
24 if edges = 1 then
25 mobility ← mobility +1

26 edges ←⌈ edges
sb

⌉
27 foreach no ∈ FO(n) do
28 µ(no) ← min(µ(no),T (no)+mobility)

29 return SASAP

(line 7). Then, the mobilities of its fan-outs are updated using a similar computation as in

Algorithm 6.2. A map T stores the temporary mobilities of the fan-outs of n, initialized to

zero (lines 8-9). The foreach-loop in lines 12-21 is similar to lines 3-6 in Algorithm 6.2, except

that the computation of variable splitters in Algorithm 6.2 is rewritten as a loop (lines 14-17)

to compute the local mobility (variable mobility), which is the number of buffers needed to

balance the splitter tree from level lprev to l , and is added to the temporary mobilities T of all

the processed fan-outs (lines 18-19). Again, the for-loop in lines 23-26 is similar to lines 7-9 in

Algorithm 6.2, where the local mobility is also similarly computed. Finally, µ is updated for

each fan-out, but to guarantee a legal schedule, it is only updated if the computed temporary

mobility is smaller (lines 27-28). In other words, from the perspective of no , the minimal

170

6.3 Technology Mapping for AQFP Circuits

mobility among the values computed via its different fan-ins as n will be taken.

6.3.4 Buffer and Splitter Optimization

The scheduling-based legalization approach presented in the previous section allows us to find

one or two legal mapped networks that are depth-optimal. In some scenarios, this may already

be good enough, but it is still possible to further optimize the obtained mapped network to

reduce its size. In this section, given a mapped network, we attempt to find a better schedule

to minimize |B | using a heuristic approach based on minimum-register retiming. Then, we

present an optimization flow for technology legalization of AQFP circuits.

Retiming-based buffer and splitter optimization

The optimization of buffers and splitters in an AQFP circuit is reminiscent of retiming for the

register minimization problem. Minimum register retiming is the problem of relocating the

registers of a circuit in order to minimize their number while preserving the functionality.

Retiming is formulated as a linear problem dual to the minimum-cost flow problem for which

many polynomial algorithms exist [115].

In this section, we propose the AQFP B/S retiming algorithm, which minimizes buffers

and splitters in an AQFP network, similar to how registers are minimized in minimum register

retiming. Previous work applied a retiming-like optimization to AQFP logic [13, 35]. However,

their approach does not perform global retiming but moves buffers locally from the output

of splitters to the input. This optimization is subsumed by Algorithm 6.1 in the definition of

irredundant mapped networks.

Minimizing the number of buffers can be seen as maximizing the sharing of buffers on

multiple paths. Without accounting for fan-out-branching, e.g., assuming that buffers have an

infinite splitting capability, the minimum number of buffers is achievable in polynomial time

using a minimum register retiming algorithm considering each buffer as a register. Retiming

preserves the path-balancing constraint since each path traverses the same number of registers

before and after retiming. Previous works successfully applied this idea to the RSFQ technology

family [88], but when the fan-out-branching constraint in AQFP comes into consideration,

splitter relocation is conditional on respecting the splitting capacity. Hence, retiming is only a

heuristic for AQFP B/S optimization instead of an optimal algorithm.

Example 6.3.11. Figure 6.4a shows an example mapped sub-network under retiming, where

sb = 3 is assumed. This sub-network is redundant because b1 and b2 have out-degree 2 < sb

(Definition 6.3.5). Indeed, a mapped network can become redundant temporarily during

retiming. Not all splitters can be retimed at the same time, and this example shows two such

cases. First, b0 cannot be retimed because its movement would increase the fan-out count of n to

2, violating the fan-out constraint of gates (sg = 1). Second, only one of the splitters b1 and b2 can

be selected for retiming since the movement of both of them would increase the fan-out count of

171

Chapter 6 . Specializing Synthesis for Superconducting Technologies

f0 f1 f2 f3

n

b0

b1 b2

(a) Before retiming

f0 f1

f2 f3

n

b0

b2

(b) After moving b1

Figure 6.4: Example sub-network for retiming. (sb = 3)

Algorithm 6.5: B/S retiming

Input: Mapped network N ′, Retiming direction di r
Output: Optimized mapped network N ′

1 while improvement do
2 select_retimeable_buffers(N ′)
3 set up retiming direction to di r
4 maximum_flow(N ′)
5 get_minimum_cut(N ′)
6 N ′ ← move_retimed_buffers(N ′)

7 while improvement do
8 select_retimeable_buffers(N ′)
9 set up retiming direction to ¬di r

10 maximum_flow(N ′)
11 get_minimum_cut(N ′)
12 N ′ ← move_retimed_buffers(N ′)

13 N ′ ← reconstruct_fan-out_trees(N ′)
14 return N ′

b0 to 4, violating the fan-out constraint of buffers (sb = 3). Also, fan-outs of splitters in the same

fan-out tree originating from the same gate are exchangeable, and such exchanges may affect

possible retiming optimizations. For example, instead of FO(b1) = { f0, f1}, FO(b2) = { f2, f3} in

Figure 6.4a, FO(b1) = { f0, f2}, FO(b2) = { f1, f3} is also possible and may unlock more retiming

on b1 and b2. Figure 6.4b shows the fan-out tree after the relocation of splitter b1 to its transitive

fan-out cone (not shown). ▲

The B/S retiming algorithm is shown in Algorithm 6.5, which takes a legal mapped network

as input and outputs of an optimized mapped network. The retiming problem is formulated

as a binary maximum-flow problem similar to [83], which separates flow computation into

forward and backward directions. The input variable dir defines which direction to execute

first. This parameter will be explained in the next section. Generally, forward is the preferred

first direction if the circuit has an ALAP configuration since most of the registers would be

placed closer to the PIs. Backward is instead a better first direction on an ASAP configuration.

The algorithm performs two optimization loops in both directions until no more improve-

ments can be made. A loop starts by selecting buffers to be retimed (lines 2 and 8), which

are buffers that can be relocated without exceeding the splitting capacity of its fan-in node.

172

6.3 Technology Mapping for AQFP Circuits

g0 g1

r

s

(a) Initial sub-network

g0 g1

r s

(b) Optimized sub-network

Figure 6.5: Example of forward retiming. (sb = 3)

In the case of mutually exclusive selections (i.e., two splitters cannot be retimed at the same

time), one is picked randomly. Each selected buffer is a source and a sink of a unitary flow.

In this step, filtering rules are applied to avoid selecting redundant elements such as more

than one buffer in buffer chains. The filter rules help improve the run time since they reduce

the number of elements for which an augmenting path algorithm starts. Next, the algorithm

proceeds by selecting the retiming direction (lines 3 and 9), computing the binary maximum

flow using the augmenting path algorithm (lines 4 and 10), getting the minimum cut (lines 5

and 11) and moving the selected buffers to the new position if there is a reduction (lines 6 and

12). Since retiming movements may create redundant fan-out trees, the algorithm terminates

by reconstructing each fan-out tree irredundantly using Algorithm 6.1 (line 13).

Example 6.3.12. An example of a forward retiming iteration is depicted in Figure 6.5. Fig-

ure 6.5a shows the initial sub-network, where sb = 3. The algorithm selects the buffers and

splitters in orange to perform retiming. The B/S elements r and s are not selected. Figure 6.5b

shows the optimized sub-network after retiming. Two new buffers are inserted (in green). The

number of buffers is reduced from 6 to 5 while maintaining the same path lengths. ▲

Buffer and splitter optimization flow

We present a flow to minimize the number of buffers and splitters after an initial insertion. In

this flow we employ: (i) the retiming-based buffer and splitter optimization algorithm in this

section; (ii) the chunk movement algorithm in [105] (briefly described in Section 6.3.2); (iii) a

deterministic circuit randomization function. The optimization flow is shown in Algorithm 6.6.

173

Chapter 6 . Specializing Synthesis for Superconducting Technologies

Algorithm 6.6: Buffer and splitter optimization

Input: Mapped network N ′
init, Retiming direction di r

Output: Optimized mapped network N ′
opt

1 N ′
tmp ← bs_retiming(N ′

init, di r) ▷ Run Algorithm 6.5

2 repeat
3 N ′

opt ← N ′
tmp

4 N ′
tmp ← chunked_movement(N ′

opt) ▷ Run Algorithm in [105]

5 N ′
tmp ← bs_retiming(N ′

tmp, di r) ▷ Run Algorithm 6.5

6 N ′
tmp ← randomize(N ′

tmp)

7 until |N ′
tmp| ≥ |N ′

opt|
8 return N ′

opt

Algorithm 6.7: AQFP technology legalization flow (solves Problem 6.3.4)
Input: MIG network N∗
Output: Mapped network N ′

1 SALAP ← ALAP(N∗) ▷ Run Algorithm 6.3
2 SASAP ← ASAP(N∗, SALAP) ▷ Run Algorithm 6.4
3 N ′

ALAP ← insert_buffers(N∗, SALAP) ▷ Run Algorithm 6.1
4 N ′

ASAP ← insert_buffers(N∗, SASAP) ▷ Run Algorithm 6.1
5 di r ← forward
6 N ′

ALAP ← optimize(N ′
ALAP, di r) ▷ Run Algorithm 6.6

7 di r ← backward
8 N ′

ASAP ← optimize(N ′
ASAP, di r) ▷ Run Algorithm 6.6

9 if |N ′
ALAP| < |N ′

ASAP| then
10 return N ′

ALAP
11 else
12 return N ′

ASAP

Algorithm 6.6 combines retiming and chunk movement [105] to achieve better results than

the individual algorithms. Additionally, we use a deterministic randomization function to

select a different topological order and to rearrange the fan-out of nodes in the network. As

the creation of a splitter tree is also influenced by the fan-out processing order (Algorithm

6.1), this method may lead to different splitter trees, thereby enabling further optimizations.

Generally, the deterministic randomization function unlocks an additional 3.6% reduction in

the number of buffers and splitters.

6.3.5 AQFP Technology Mapping

We present a flow for AQFP technology mapping consisting of buffer and splitter insertion

followed by B/S optimization. In this flow, we employ the depth-optimal buffer and split-

ter insertion algorithms described in Section 6.3.3 and the buffer and splitter optimization

approach in Algorithm 6.6. The optimization flow is shown in Algorithm 6.7.

In Algorithm 6.7, two initial scheduling, ALAP and ASAP are obtained with the depth-

174

6.3 Technology Mapping for AQFP Circuits

optimal scheduling algorithms and result in two mapped networks by inserting buffers irre-

dundantly. Then, the two mapped networks are optimized independently using the portfolio

optimization flow. Finally, the better one with a smaller size is adopted. This method performs

better than choosing the mapped network with the best size after depth-optimal scheduling

and then performing optimization. Specifically, in numerous cases, optimizing the mapped

network with the worse result after scheduling also leads to a better size. Since the B/S op-

timization is run twice, the adopted method takes almost double the time compared to the

other mentioned.

6.3.6 Experimental Results

All of the algorithms and flows presented in this paper are implemented in the open-source

C++ logic synthesis library mockturtle1 [183]. In this section, we present experimental results

of our methods solving Problem 6.3.4 alone. First, we present the experimental results against

the state of the art when this work was published in [195]. Then, we presents results against the

current state of the art. Finally, we demonstrate the scalability of the proposed B/S insertion

algorithm on large benchmarks. To be consistent with previous works that we compare to,

we use sb = 4 for the splitting capacity of buffers. All results and baselines are verified and

published2 for third-party verification.

Results for the AQFP technology mapping problem, (Problem 6.3.2), obtained by com-

bining MIG-based optimization with the technology legalization flow in Algorithm 6.7, are

available in [110] and show a reduction in area, delay, and energy-delay product (EDP) by 36%,

12%, and 44%, respectively, compared to the state-of-the-art AQFP synthesis flow [61].

Depth-optimal buffer and splitter insertion and optimization

First, we compare the performance of our B/S insertion and optimization flow in Algorithm 6.7

against the state-of-the-art (SoTA) algorithm on solving the same problem using scheduling

algorithms that are not depth optimal [105]. The method in [105] first generates non-depth-

optimal ASAP and ALAP schedules, selects the best one, and then further optimizes the number

of B/S elements using the chunk movement algorithm. To fairly compare against [105], we

modify Algorithm 6.7 to select the best mapped network after depth-optimal ALAP (Algo-

rithm 6.3) and ASAP (Algorithm 6.4) scheduling for carrying the optimization. For our baseline,

we use all the benchmarks used in the first work on AQFP B/S insertion [35].

The results are shown in Table 6.2. The number of gates (|G∗|) and the depth (d(N∗)) of

the initial MIGs, as well as the number of buffers (|B |), the JJ count (#JJs) and the depth (d(N ′))

of the mapped networks are listed. For our approach, we also include the results right after

B/S insertion, indicated with the term “Ins.”. Our approach (the simplified Algorithm 6.7)

1https://github.com/lsils/mockturtle
2https://github.com/lsils/SCE-benchmarks

175

https://github.com/lsils/mockturtle
https://github.com/lsils/SCE-benchmarks

Chapter 6 . Specializing Synthesis for Superconducting Technologies

Table 6.2: Our technology legalization results comparing to the non-depth-optimal buffer and
splitter insertion.

Benchmark Initial MIG N∗ Non-depth-optimal SoTA [105] Ours (simplified Algorithm 6.7)
|G∗| d(N∗) |B | #JJs d(N ′) Time (s) |B | Ins. d(N ′) Time Ins. (s) |B | #JJs Total Time (s)

adder1 7 4 16 74 8 0.00 16 8 0.00 16 74 0.00
adder8 77 17 371 1204 33 0.00 374 33 0.00 372 1206 0.01
mult8 439 35 1869 6372 71 0.00 1824 70 0.00 1688 6010 0.06
counter16 29 9 65 304 17 0.00 70 17 0.00 65 304 0.00
counter32 82 13 155 802 23 0.00 170 23 0.00 154 800 0.00
counter64 195 17 352 1874 30 0.00 377 30 0.00 347 1864 0.01
counter128 428 22 760 4088 38 0.00 807 38 0.00 747 4062 0.02
c17 6 3 12 60 5 0.00 12 5 0.00 12 60 0.00
c432 121 26 874 2474 38 0.00 862 37 0.00 839 2404 0.02
c499 387 18 1275 4872 31 0.00 1198 29 0.00 1173 4668 0.02
c880 306 27 1703 5242 41 0.01 1691 40 0.00 1511 4858 0.10
c1355 389 18 1290 4914 31 0.00 1206 29 0.00 1184 4702 0.03
c1908 289 21 1298 4330 35 0.01 1318 34 0.00 1236 4206 0.04
c2670 368 21 2132 6472 30 0.02 2080 28 0.00 1932 6072 0.09
c3540 794 32 2266 9296 55 0.10 2678 52 0.00 1972 8708 0.16
c5315 1302 26 6026 19864 42 0.12 7430 40 0.01 5646 19104 0.45
c6288 1870 89 9893 31006 180 0.12 14119 179 0.01 9009 29238 0.23
c7552 1394 33 8759 25882 66 0.12 10149 56 0.01 7505 23374 1.01
sorter32 480 15 480 3840 30 0.00 480 30 0.00 480 3840 0.01
sorter48 880 20 880 7040 35 0.00 960 35 0.00 880 7040 0.02
alu32 1513 100 14655 38388 171 0.84 15207 169 0.01 13837 36752 0.82

Total 55131 178398 1010 1.34 61796 982 0.04 50605 169346 3.08

performs significantly better in almost every benchmark reducing the number of B/S elements

up to 14%. Additionally, the depth is also significantly reduced, up to 15% in benchmark c7552.

After depth-optimal B/S insertion, the B/S retiming algorithm is responsible of the 84% of the

total area reduction on average. Our results improve even more using the standard flow in

Algorithm 6.7. Those results are reported in the next experiment in Table 6.3.

Technology legalization and buffer optimization

First, we compare the performance of our B/S insertion and optimization flow in Algorithm 6.7

against the current state-of-the-art (SoTA) on solving the same problem [62]. For the sake of

completeness, we list all of the benchmarks used in the first work on AQFP B/S insertion [35],

but the total results are computed only with the benchmarks presented in [62].

The results are shown in Table 6.3. The number of gates (|G∗|) and the depth (d(N∗))

of the initial MIGs, as well as the number of buffers (|B |), the JJ count (#JJs) and the depth

(d(N ′)) of the mapped networks are listed. Moreover, the runtime (Time) used by our flow is

presented. The run time data is not available in [62] and results are not reproducible since the

implementation is not openly available. In the last column, we list the known global optimum

results obtained by ILP solving [125] to have an idea of how far the heuristics are from optimal.

Some of the numbers are only an upper bound because the ILP formulation used by [125]

could not solve these problems within reasonable time, and some of the benchmarks are too

big for the ILP solver to return any partial result.

From Table 6.3, we can notice that the heuristic methods achieve optimum for the smaller

176

6.3 Technology Mapping for AQFP Circuits

Table 6.3: Technology legalization results comparing to the state-of-the-art and global opti-
mum.

Benchmark Initial MIG N∗ SoTA [62] Ours (Algorithm 6.7) ILP [125]
|G∗| d(N∗) |B | #JJs d(N ′) |B | #JJs d(N ′) Time (s) |B | #JJs d(N ′)

adder1 7 4 - - - 16 74 8 0.00 16 74 8
adder8 77 17 - - - 371 1204 33 0.01 371 1204 33
mult8 439 35 1681 5996 70 1690 6014 70 0.18 ≤1724 ≤6082 ≤70
counter16 29 9 66 306 17 65 304 17 0.00 65 304 17
counter32 82 13 156 804 23 154 800 23 0.01 154 800 23
counter64 195 17 351 1872 30 347 1864 30 0.02 347 1864 30
counter128 428 22 755 4078 38 747 4062 38 0.07 747 4062 38
c17 6 3 - - - 12 60 5 0.00 12 60 5
c432 121 26 829 2384 37 839 2404 37 0.02 829 2384 37
c499 387 18 1173 4668 29 1173 4668 29 0.09 1173 4668 29
c880 306 27 1536 4908 40 1511 4858 40 0.15 - - -
c1355 389 18 1186 4706 29 1184 4702 29 0.06 1178 4690 29
c1908 289 21 1253 4240 34 1234 4202 34 0.09 1232 4198 34
c2670 368 21 1869 5954 28 1912 6032 28 0.32 ≤1804 ≤5816 ≤28
c3540 794 32 1963 8690 52 1943 8650 52 0.81 ≤1926 ≤8516 ≤52
c5315 1302 26 5505 18942 40 5640 19092 40 2.06 ≤6260 ≤20332 ≤42
c6288 1870 89 8832 28884 179 8647 28514 179 2.56 - - -
c7552 1394 33 6768 21908 58 7437 23238 56 4.20 - - -
sorter32 480 15 - - - 480 3840 30 0.06 480 3840 30
sorter48 880 20 - - - 880 7040 35 0.20 880 7040 35
alu32 1513 100 13976 37030 169 13836 36750 169 2.74 - - -

Total∗ 47899 155370 873 48359 156154 871 13.38

benchmarks and are fairly close to optimum for most of the benchmarks. While our flow

obtains slightly worse results in average size than SoTA, the difference is very small (0.96%

in number of buffers and 0.5% in JJ count). Thanks to the depth-optimal scheduling, we

obtain a better depth in one benchmark (c7552). Most importantly, these results are obtained

in a very short run time. Thus, our flow can be used in design-space exploration (DSE),

where legalization is called extensively, such that large improvements can be achieved. While

the design of a DSE engine for AQFP circuits is not addressed in this thesis, results using

the techniques of this chapter have been published in [110]. These results demonstrate a

reduction in area, delay, and energy-delay product (EDP) by 36%, 12%, and 44%, respectively,

compared to the state-of-the-art AQFP synthesis flow [61].

It is also worth mentioning that, out of the 21 benchmark circuits, the legalization and

optimization result starting from an ASAP scheduling is selected (i.e., better than the one from

an ALAP scheduling) in 16 benchmarks. We can see that ASAP may provide better quality in

more cases, but this is not definitive. Thus, trying both starting points, as in Algorithm 6.7,

helps achieve better results when the runtime budget is sufficient.

Scalable technology legalization

To demonstrate the scalability of our AQFP legalization approach, we use the largest 10

benchmarks in the EPFL benchmark suite [3] for experiment, which are 10 to 100 times larger

in size compared to the benchmarks generally used in previous works on AQFP logic synthesis.

177

Chapter 6 . Specializing Synthesis for Superconducting Technologies

Table 6.4: Technology legalization results on the 10 largest EPFL benchmarks.

Benchmark Initial MIG N∗ Non-d.-opt. legal.+opt. [105] D.-opt. legal. (Alg. 6.3, 6.4 + Alg. 6.1) D.-opt. legal.+opt. (Alg. 6.7)
|G∗| d(N∗) |B | d(N ′) Time (s) |B | d(N ′) Time (s) |B | d(N ′) Time (s)

div 57300 2217 2084772 4918 271.71 1881255 4371 0.87 - 4371 >300
hyp 136109 8762 - 17910 >300 9035578 17246 2.78 - 17246 >300
log2 24456 200 98047 414 194.92 129547 379 0.10 86705 379 64.18
multiplier 19710 133 79651 286 13.21 102005 264 0.08 63414 264 43.50
sin 4303 110 17470 225 5.67 18905 188 0.01 14886 188 4.12
sqrt 23238 3366 1751742 8191 5.64 1791005 6628 0.49 1343705 6628 284.10
square 12180 126 60552 256 42.71 89516 251 0.03 63630 251 18.30
arbiter 7000 59 31011 65 5.80 27566 63 0.01 25721 63 1.28
mem_ctrl 42758 73 305689 182 87.86 216927 114 0.27 215202 114 10.55
voter 7860 47 18044 99 5.43 19263 86 0.01 15736 86 0.92

The MIGs are obtained using delay-oriented graph mapping [202] (in Section 5.2). In Table

6.4, we compare our results obtained using a simple depth-optimal legalization flow (the best

between Algorithm 6.3 and Algorithm 6.4 followed by Algorithm 6.1, column “D.-opt. legal.”)

as well as depth-optimal legalization with further optimization (Algorithm 6.7, column “D.-opt.

legal.+opt.”) against results of non-depth-optimal legalization with optimization presented

in [105] (column “Non.-d.-opt. legal.+opt.”). A timeout limit of 300 seconds is enforced. This

experiment demonstrates that simple legalization without optimization is very fast. Thus,

such a flow can still be used in design-space exploration even when benchmarks are large.

Comparing the mapped network depths, the proposed depth-optimal scheduling reduces the

depth by about 9% on average.

6.4 Logic Synthesis for SFQ Circuits

Rapid Single-Flux Quantum (RSFQ) is the most mature superconducting logic family [119].

Multiple variants of RSFQ, such as the eSFQ [149], are commonly grouped under the term SFQ.

Unlike CMOS, SFQ circuits encode the logic “true” in a small voltage pulse and the logic “false”

in a pulse absence. Consequently, most SFQ logic gates are clocked to discern between these

two states. These gates function as latches, with a clock input and one or more data inputs.

When a pulse arrives at a data input, it alters the internal state of the gate. Subsequently,

a clock pulse resets the gate to its initial state and may generate an output pulse based on

the internal state. As SFQ circuits rely on the clock signal, they necessitate pipelining at the

gate level. To ensure correct data propagation, i.e., data at each gate must be present at

specific time-frames for correct computations, SFQ circuits require delay registers (DFFs) in

the combinational paths so that every path from primary inputs to logic gates traverses the

same number of clocked gates. This constraint is referred to as path balancing. Furthermore,

due to the quantized nature of SFQ pulses, most RSFQ primitives have a maximum driving

capacity of one gate. Consequently, a special cell called splitter is necessary to drive multiple

fan-outs.

In this work, we present an innovative synthesis flow to carry out the optimization and

mapping for SFQ technology. In particular, we focus on delay optimization which is key to

178

6.4 Logic Synthesis for SFQ Circuits

synthesizing efficient SFQ circuits. Technology-independent optimization is carried over the

xor-and graph (XAG) (or xor-and-inverter graph (XAIG)) since it closely abstracts the logic

primitives of SFQ. In fact, both 2-input XOR and 2-input AND (OR) gates have similar delay

and area costs. Moreover, XAGs are more compact than the commonly used and-inverter

graph (AIGs) offering better opportunities to restructure logic through additional rewriting

rules and Boolean methods. We present several techniques namely, mapping, re-mapping,

algebraic rewriting, exclusive sums-of-products (ESOP) balancing, Boolean rewriting, and

resubstitution. Technology mapping is performed directly on the XAG without previous

decomposition into an AIG. We describe post-mapping methods to satisfy the path-balancing

and fan-out constraints. Finally, we use minimum-register retiming to optimally minimize the

number of inserted balancing DFFs.

In the experiments, we show that our synthesis flow efficiently reduces the delay without

causing an area explosion. We compare against the state-of-the-art showing 43% and 34%

reduction on average in area and delay, respectively.

6.4.1 Related Works

In this section, we introduce existing works on SFQ circuits focusing on reducing the path-

balancing cost. First, we present related work in buffer and splitter insertion. Then, we

describe existing technology-independent synthesis and technology mapping methods for

SFQ logic. Finally, we describe other orthogonal techniques based on clocking schemes and

SFQ cell design.

Buffer and splitter insertion and optimization

Adiabatic Quantum-Flux Parametron (AQFP) [218] is a sibling superconducting technology of

SFQ and has similar path-balancing and fan-out-branching constraints, thus also requiring

buffer and splitter insertion [35, 80, 105, 110, 195] (Section 6.3). However, a key difference

between the two technologies makes the problem computationally distinct for them: in

AQFP, splitters are clocked and considered in path balancing, so fan-out branching and path

balancing have to be addressed together; whereas SFQ splitters are not clocked, thus the two

constraints can be considered separately, simplifying the mapping problem.

The first complete buffer and splitter insertion method for SFQ was proposed in [88]. The

method performs classical technology mapping into a SFQ cell library. Then, balancing DFF

are inserted heuristically for each path. Note that this process is trivial since splitters are

not inserted at this stage. Next, the number of DFFs is minimized using minimum-register

retiming [115]. Contrarily to AQFP circuits, since splitters are asynchronous, the fan-out

change of a gate does not limit relocation of registers. Consequently, given a network, the

number of balancing DFFs can be optimally minimized. Finally, also splitter trees are inserted.

In this work, we follow a similar strategy.

179

Chapter 6 . Specializing Synthesis for Superconducting Technologies

The path balancing problem has also been addressed on sequential SFQ circuits [160]. The

authors formulate the problem as a level assignment problem to a cyclic directed graph. Then,

the circuit is path balanced by equalizing the paths as for combinational logic.

SFQ logic synthesis

Due to path-balancing DFFs and splitters, the area of SFQ circuits can grow prohibitively large.

Consequently, multiple research works address minimizing the path-balancing cost before

and during technology mapping.

In [158], algebraic factoring and Boolean rewriting have been extended to account for

the path-balancing cost during logic optimization on an AIG representation of the logic. A

similar extension was proposed in [159] for technology mapping. This approach replaces the

area heuristics of optimization algorithms with a heuristic for imbalances, based on dynamic

programming, ensuring local-optimal balancing for logic trees. However, typical designs are

DAGs, and in this scenario, this path-balancing cost tends to overestimate the number of

DFFs, leading to suboptimal results. Additionally, when integrating path-balancing costs in

technology-independent algorithms [158] also real critical paths are not known. For instance,

since inverters are not represented, their contribution to the delay is not considered during

the optimization leading to incorrect balancing.

Recently, Synopsys developed a RTL-to-GDSII flow for SFQ technology [2, 148]. Logic

synthesis is performed on the and-or-inverter graphs (AOIG) using algebraic rules and Boolean

rewriting. Additionally, the work underlines the importance of depth optimization as a proxy

for imbalance reduction.

All previous work on synthesis for SFQ addressed the logic synthesis problem using and-

inverter graphs (AIG) or and-or-inverter graphs (AOIG). Instead, in this work we formulate the

logic optimization using xor-and graph (XAG), to better abstract the logic primitives of the

SFQ technology and explore more optimization opportunities through additional rewriting

rules and Boolean methods.

Clocking schemes and SFQ cell design

To reduce the area and power overhead due to path-balancing DFFs, several works re-design

the clock network to SFQ gates. In [157], the authors design a dual-clock network composed

of a fast clock for logic and a slow clock for sequential registers. Sequential registers are im-

plemented using non-destructive readout (NDRO) registers, such that the same data inputs

are propagated through the logic for multiple iterations. This approach trades the circuit’s

throughput for a reduction in the number of path-balancing DFFs. If the ratio between the

frequency of the slow and fast clock matches the logic depth of the circuit, path-balancing

DFFs are no longer required. However, this technique necessitates the use of relatively ex-

pensive NDRO DFFs, the duplication of the clock distribution network, and the generation of

180

6.4 Logic Synthesis for SFQ Circuits

coordinated clocks. A dual clocking scheme has also been utilized in an RTL-to-GDSII flow,

demonstrating a significant area improvement [148]. An extension of this method considers

multi-phase clocking, which eliminates the need for NDRO DFFs at the cost of additional

clock networks and a few balancing DFFs [19, 118]. Another interesting scheme is the clock-

follow-data clocking [64], which asynchronously delays the clock lines so that a single clock

pulse carries the data through the whole circuit. However, designing and verifying such a clock

network is challenging.

Other approaches focus on reducing path-balancing DFFs by minimizing the number of

clocked elements in a circuit. In dynamic SFQ (DSFQ) logic [173], gates reset to the initial

state after the specified period of time, removing the need for a clock. The design of DSFQ

circuits is therefore similar to CMOS circuits where large combinational blocks can be synchro-

nized using relatively few synchronous elements [96]. A similar approach based on clockless

logic gates is proposed in [89]. These approaches offer advantages over conventional SFQ,

including smaller area, lower clock network complexity, and simpler path balancing. However,

evaluating the interaction among input skew tolerance, clock frequency, bias margins [96],

and timing poses a significant challenge. Other techniques explore using confluence buffers

and splitters (asynchronous gates) to perform logic computation without a clock signal. In [17,

92], the authors propose special compound gates that internally use a mix of asynchronous

and synchronous computations. Specifically, in [16], the authors present a cell library imple-

menting any 4-input function in one clock cycle. Using this library significantly reduces the

logic depth of SFQ circuits and, consequently, the number of imbalances.

6.4.2 XAG-based Logic Synthesis

This section presents our first contribution on logic synthesis for SFQ circuits. Technology

libraries for SFQ are typically simple and implement basic functions. Notably, logic cells within

these libraries are all clocked and have similar areas. Interestingly, XOR cells demonstrate a

similar level of efficiency as AND cells. Based on this observation, we center our technology-

independent synthesis flow for SFQ on xor-and graphs (XAGs). XAGs have multiple advantages

over the commonly used and-inverter graphs (AIGs). XAGs are more compact since they

contain one additional primitive, which is implemented using three 2-input ANDs in AIGs.

Consequently, circuits represented by XAGs tend to be smaller and shallower. Moreover, XAGs

offer more opportunities to restructure logic through additional rewriting rules and Boolean

methods.

Minimizing the logic depth is essential for a fast and compact SFQ circuit. First, the logic

depth directly relates to the circuit latency. Latency is generally dominated by the number of

clock cycles needed to realize a function. Since each SFQ gate is clocked, the latency can be

approximated as the logic depth of the circuit. Second, delay optimization helps minimize

the number of necessary balancing DFFs. Intuitively, longer critical paths require more DFF

elements due to longer paths to balance.

181

Chapter 6 . Specializing Synthesis for Superconducting Technologies

In this section, we present several techniques aimed at optimizing delay and area over

the XAGs, thereby enhancing the overall efficiency and performance of SFQ circuits. First, we

present a method to obtain an optimized XAG representation. Then, we present three efficient

algorithms, one algebraic and two Boolean, to optimize depth over the primitives AND and

XOR. Finally, we describe two methods to reduce the area.

Derive the initial XAG

Given a generic Boolean network, the first problem to address is how to obtain a good initial

xor-and graph (XAG) representation. To achieve it, we employ the state-of-the-art graph

mapping strategy based on the versatile mapper in Section 5.2 (or [202]). It consists of a

delay-oriented mapping algorithm that leverages a database of size-optimum XAG structures

as a library. The XAG structures are derived using SAT-based exact synthesis over the 4-input

NPN classes [69]. Multiple minimum structures with different pin-to-pin delays are stored

for each class. The utilization of this method yields significantly improved results compared

to merely identifying XOR gates, as it incorporates Boolean optimization and rewriting by

utilizing locally optimum structures.

Depth optimization with XAG algebraic rewriting

Boolean algebra defines primitive transformations and properties, referred to as a setΩ. In the

context of delay optimization, a subset of these fundamental properties plays an important

role. In particular, for XAGs, we can identify the following algebraic rules contained inΩ:

Ω.A AN D : a ∧ (b ∧ c) = (a ∧b)∧ c (6.4)

Ω.AXOR : a ⊕ (b ⊕ c) = (a ⊕b)⊕ c (6.5)

Ω.D AN D−OR : a ∧ (b ∨ c) = (a ∧b)∨ (a ∧ c) (6.6)

Ω.D AN D−XOR : a ∧ (b ⊕ c) = (a ∧b)⊕ (a ∧ c) , (6.7)

where 6.4 is the associative property of AND, 6.5 is the associative property of XOR, 6.6 is the

distributive property of AND over OR, and 6.7 is the distributive property of AND over XOR.

Note that the associative property of OR is contained in 6.4. In XAGs, transformations 6.4 and

6.5 can push critical signals forward towards the POs, when the associative property holds.

Transformations 6.6 and 6.7, on the other hand, are less directly applicable. Experimental

results have shown that these latter transformations are rarely useful, especially in optimized

circuits. Nevertheless, two powerful transformations can be derived from 6.4, 6.5, 6.6, and

6.7 when considering logic cones of three operators and the interplay between AND-OR and

AND-XOR. We refer to the extended set asΨ:

Ψ.D AN D−OR : a ∧ (b ∨ (c ∧d)) = (a ∧b)∨ ((a ∧ c)∧d) (6.8)

Ψ.D AN D−XOR : a ∧ (b ⊕ (c ∧d)) = (a ∧b)⊕ ((a ∧ c)∧d). (6.9)

182

6.4 Logic Synthesis for SFQ Circuits

0
a

b
1

c
0

d
1

f

4

∧

⊕

∧

(a) Before rewrite

0
a

0
a

b
1

c
0

d
1

f

3

∧

∧∧

⊕

(b) After rewrite

Figure 6.6: Rewriting with AND-XOR distributivity inΨ (6.9).

These two rules define the distribution of AND over OR (6.8) and AND over XOR (6.9). Note

that in an XAG, the OR is represented as an AND with inverted inputs and output according to

De Morgan’s laws.

Example 6.4.1. Figure 6.6 shows an example of how the derived AND-XOR distributive rule

in Equation 6.9 can reduce the delay of a circuit. The transformation is applied to the XAG

in Figure 6.6a. The critical signal d binds the arrival time at the output. The transformation

pushes signal d forward by distributing signal a through the XOR operation and applying

AND-associativity to signal d. The result in Figure 6.6b shows a delay reduction by one, from 4

to 3, at the cost of one additional AND operation. ▲

The algebraic rules are graph-based; hence, they are extracted structurally from an XAG.

We employ rules to detect properties and apply transformations based on input arrival times,

inverted edges, and gate type. Node duplication is also enabled in the case of nodes with

multiple fan-outs.

Algorithm 6.8 shows how the algebraic rewriting rules are carried out on an XAG. The

algorithm applies rewriting rules on critical paths reachable from one PO at a time. The critical

paths are updated after every successful move. The algorithm first tries to apply moves based

on associativity, which incur less area increase than distributive rules. When associativity fails,

distributive rules are attempted.

Depth optimization with ESOP balancing

Exclusive-Sums-of-Products (ESOPs) are a two-level representation of Boolean functions com-

posed of an exclusive OR of product terms. Differently from Sums-of-Products (SOPs), which

are based on the primitives AND and OR, ESOPs utilize AND and XORs. In the SFQ context,

ESOPs are interesting since XORs are efficient gates. Moreover, for many Boolean functions, the

183

Chapter 6 . Specializing Synthesis for Superconducting Technologies

Algorithm 6.8: XAG depth algebraic rewriting
Input: XAG N
Output: Optimized XAG N

1 foreach edge p ∈ PO(N) do
2 if in_critical_path(N , p) then
3 foreach node n ∈ critical_path(N , p) do
4 Ω.A AN D (N , n)
5 Ω.AXOR (N , n)
6 Ψ.D AN D−OR (N , n)
7 Ψ.D AN D−XOR (N , n)
8 update_timing(N , n)

9 return N

number of cubes in minimal ESOPs is lower than the number of cubes in minimal SOPs [175].

SOP-balancing [143] is a scalable technique to optimize for delay. It consists of extracting

small cones of logic, generally up to ten variables, converting them into SOPs, and applying

AND balancing to each term and the sum. In practice, each term is considered as a multiple-

input AND and it is decomposed into 2-input ANDs while minimizing the arrival time of the

term root. The sum is decomposed similarly into 2-input ORs.

In this work, we employ ESOP-balancing to achieve delay optimization over the primitives

AND and XOR. Algorithm 6.9 presents a high-level view of ESOP balancing. Given a large

XAG, cut enumeration [47] is used to break the circuit into multiple logic cones. For each

cone, an initial ESOP cover is extracted using the algorithm described in [54] that computes

an exact minimum Pseudo-Kronecker expression (PKRMs). PKRMs are a specific subset of

ESOP expressions that can be generated using only positive or negative Davio expansion and

Shannon expansion. In our implementation, we extract PKRMs directly from truth tables

without involving BDDs as in the original formulation. Then, the initial cover is minimized

to obtain a compact ESOP using the EXORCISM family of heuristics [147]. To reduce the run

time, ESOPs are cached for later reuse using a hash table. Next, AND- and XOR-balancing

is performed to generate a decomposition tree that minimizes the arrival time at root n.

The arrival time of a leaf is defined as the arrival time of the best cut computed at the leaf.

Algorithm 6.9 works similarly to a technology mapper [143, 202]. In the first section, from

line 2 to line 10, the algorithm computes the cuts and selects one having the best arrival time

for each node. At line 11, the area is recovered by selecting lower-cost decompositions in

paths where the slack is positive. Area recovery works similarly to [202]. This step is crucial to

minimize the area increase derived from balancing due to logic duplication. Finally, at line 12,

a cover is extracted and converted into a balanced and delay-optimized XAG.

184

6.4 Logic Synthesis for SFQ Circuits

Algorithm 6.9: ESOP balancing
Input: XAG N
Output: Optimized XAG M

1 C ←;
2 foreach node n ∈ N in topological order do
3 C (n) ← compute_cuts(N , C , n)
4 foreach cut c ∈C (n) do
5 t t ← compute_truth_table(N , c)
6 esop ← compute_exact_pkrm(t t)
7 exorcism(esop)
8 compute_balancing_cost(N , C , n, esop)
9 if better delay than best cut then

10 set_best_cut(C (n), c)

11 area_recovery(N , C)
12 M ← extract_cover(N , C)
13 return M

Depth optimization with remapping

XAG-remapping [202] is a rewriting technique that maps an XAG network to obtain a new XAG

implementation. A library of pre-computed XAG structures is used to optimize the logic. This

method is equivalent to XAG mapping but with the difference that the input and output data

structures are the same. In the synthesis flow, remapping minimizes the delay first and then

recovers the area constrained by the found delay.

Area recovery

In area recovery, Boolean rewriting and resubstitution have been extended to work for XAG

optimization.

DAG-aware rewriting [137] is a fast greedy algorithm that aims at minimizing the size of a

logic network by iteratively replacing sub-graphs rooted in a node with smaller pre-computed

structures while preserving the functionality, and (possibly) the delay, at the root node. A

database of pre-computed structures covers all the 4-variable functions classified into the NPN

equivalence classes for compactness [23]. In our implementation, pre-computed structures

are the same as those used for previous mapping tasks. Differently from remapping, this

algorithm is DAG-aware, i.e., it can reuse nodes that are already present in the network. Hence,

it is more suited for area optimization. Our implementation constrains transformations to

not increase the circuit depth. Thus, the required times are used to filter transformations. We

use the implementation presented in Algorithm 5.4 (in Section 5.3 or in [196]) to perform XAG

rewriting.

Resubstitution (re)expresses the function of a node using other nodes, called divisors, that

are already present in the network. The transformation is accepted if the new implementation

185

Chapter 6 . Specializing Synthesis for Superconducting Technologies

of a node is better in size compared to the current implementation of the node in terms of its

immediate fan-ins. This approach generalizes to k-resubstitution, which adds k new nodes

and removes at least k +1 nodes. In XAG-resub [9], added gates are 2-input ANDs and XORs

with optional inverters at the inputs/outputs.

6.4.3 Technology Mapping

After technology-independent optimization, technology mapping translates the optimized

XAG in terms of the connection of cells from an SFQ cell library. This process involves 3 steps:

mapping, balancing DFF insertion, and splitter insertion.

Technology mapping to the SFQ cell library

In our approach, we adopt a direct mapping strategy that starts from xor-and graphs (XAGs)

as the subject graph, enabling us to efficiently map into the SFQ cell library. To achieve re-

duced latency and area, the mapper is configured for minimal delay, focusing on optimizing

performance. To further enhance the quality of the mapping and minimize delays, we intro-

duce a pre-computed library of supergates [37]. These supergates are single-output networks

constructed from a few library cells, treated as a single complex cell. The use of supergates

provides the distinct advantage of mitigating the structural bias of the mapping algorithm,

which often heavily relies on the initial subject graph structure. The supergates are generated

recursively in multiple rounds using an enumeration process, ensuring a thorough exploration

of possibilities.

Previous work in SFQ mapping introduced a technology mapper called PBMap [159],

which incorporates an approximate path-balancing cost into the area cost function. The

approach defines this cost based on dynamic programming, ensuring local-optimal balancing

for logic trees. However, when dealing with optimized logic in a DAG format, where nodes

may have multiple fan-outs, using path-balancing cost in technology mapping presents three

key disadvantages.

First, PBMap overlooks area costs and relies solely on path-balancing costs that only work

for trees of logic. In contrast, DAG-mapping approaches and heuristics have been demon-

strated to be superior in comparison to minimizing delay and area [98]. Second, the heuristic

used in PBMap treats the path-balancing cost for each cell as independent, disregarding the

potential sharing of DFFs among cells connected to the same node. Consequently, PBMap

overestimates the penalty of imbalanced solutions. Additionally, the exact DFF sharing in-

formation remains unknown until the entire network is mapped, making it challenging for

their dynamic programming approach to efficiently capture this complexity. Moreover, the

number of padding DFFs can be further optimized in a post-processing phase by moving DFFs

upwards or backward through logic. Last, the simplicity of SFQ libraries enables technology

mappers to already map logic trees with optimal solutions by prioritizing local delay first and

186

6.4 Logic Synthesis for SFQ Circuits

area second, without the need to incorporate additional balancing costs. It is worth noting that

this proposition may not hold for libraries containing multiple-input cells (with more than 2

inputs). However, these complex cells lack efficient implementations in SFQ. Experimental

results confirmed these claims, indicating that delay-oriented mapping yields better area

results on average compared to the cost function in PBMap. Furthermore, attempts to use

the balancing cost as a tie-breaker during cell selection heuristics have not demonstrated any

significant advantage.

Similar considerations apply to the integration of the path-balancing cost in technology-

independent algorithms [158], where also true critical paths are not known. For instance,

since inverters are not represented, their contribution to the delay is not considered during

the optimization leading to potentially incorrect balancing.

Technology legalization: path balancing

After technology mapping, our approach inserts padding DFFs to fulfill the balancing con-

straint of the circuit for internal nodes and POs. The DFFs are inserted utilizing ASAP schedul-

ing, ensuring that the arrival times at each cell’s input are synchronized (balancing constraint),

while maintaining a constant delay at their outputs (ASAP balancing policy). To optimize the

area, our method shares DFFs among nodes connected to the same input node at the same

clock level. This algorithm guarantees an optimal DFF insertion for the ASAP schedule, and it

operates linearly with respect to the number of gates in the circuit.

After initial insertion, balancing DFFs are minimized using the minimum-register retiming

algorithm in [83, 195]. This algorithm iteratively pushes DFFs backward toward the PIs in

order to globally minimize their number.

Technology legalization: splitter insertion

As the final stage of technology mapping, we introduce splitter cells to address the fan-out

constraint. Splitters are inserted as balanced trees, considering that logic is inherently bal-

anced. Given that splitters in SFQ have a driving capacity of two gates, their number for an

arbitrary gate n is equivalent to |FO(n)|−1, where FO(n) represents the fan-out of gate n.

6.4.4 Experimental Results

The methods and the synthesis flow have been implemented in C++17 in the open-source logic

synthesis framework Mockturtle [183]. For our experiments, we use the same benchmarks of

the state-of-the-art work in [159] provided as and-inverter graphs (AIGs). The experiments

have been conducted on an Intel i5 quad-core 2GHz on MacOS. All the results were verified to

be functionally equivalent to the original circuit and to fulfill the path-balancing and fan-out

constraints.

187

Chapter 6 . Specializing Synthesis for Superconducting Technologies

Algorithm 6.10: Synthesis flow
Input: Boolean network N , Iterations i , Library L
Output: SFQ circuit M

1 xag ← map_to_xag(N)
2 fast_area_opt(xag)
3 for i iterations do
4 xag_depth_algebraic_rw(xag)
5 xag_resub(xag)
6 xag ← map_to_xag(xag)
7 xag ← esop_balancing(xag)
8 xag_boolean_rw(xag)

9 M ← map(xag, L)
10 path_balance(M)
11 min_area_retime(M)
12 insert_splitters(M)
13 return M

We first propose a simple but effective synthesis flow for SFQ that includes the XAG

methods in Section 6.4.2 and the technology mapping approach in Section 6.4.3. Then, we

present the experimental results comparing our flow to the state of the art.

SFQ synthesis flow

Algorithm 6.10 shows the synthesis flow used in our experiments. The initial point is a Boolean

network which is simply an and-inverter graph (AIG) in our experiments. First, the AIG is

mapped to an XAG and some fast and light area optimizations are performed using Boolean

rewriting and resubstitution. The objective is to get a compact starting point by removing

logic redundancy. It is crucial to not over-optimize the area at this step, and transformations

are accepted only if there is a significant improvement and zero delay increase. Then, the

core optimization starts using the algorithms in Section 6.4.2. An iteration alternates delay

optimization with area recovery. On the one hand, the more iterations the better the delay

that can be obtained in the final SFQ circuits. On the other hand, over-optimization leads to

area increase. In our experiments, we perform one iteration. After, technology-independent

optimization, the SFQ circuit is mapped and optimized using the methods in Section 6.4.3. To

maintain tractability and efficiency, we impose constraints on the supergates. Specifically, we

generate 6294 supergates limiting the number of inputs to 5 and the number of cell levels to 3.

The most computationally intensive algorithm of the synthesis flow is the minimization

of path-balancing DFFs using retiming. The complexity of retiming depends on the delay of

the circuit and the number of path-balancing DFFs. Nevertheless, problems of a million of

DFFs can be solved in a few seconds. All the other algorithms are linear (or quadratic) w.r.t the

number of nodes in the circuit.

188

6.5 Summary

Table 6.5: Evaluation of our method against the state of the art.

Benchmark Baseline PBMap [159] Our method
Size Depth Area (JJs) DFFs Delay Size Depth Area (JJs) DFFs Delay Time (s)

c499 398 19 7758 476 13 217 9 4157 276 9 0.74
c880 325 25 12909 774 22 311 13 7187 482 14 0.85
c1908 341 27 12013 696 20 163 11 3634 287 11 0.74
c3540 1024 41 28300 1159 31 782 21 16278 798 22 2.03
c5315 1776 37 52033 2908 23 1096 17 23849 1735 16 2.08
c7552 1469 26 48482 2429 19 1010 17 22582 1824 16 2.97
s1196 477 19 15332 746 18 454 12 9701 506 12 1.35
s1238 532 23 17617 864 19 499 12 10060 572 13 1.41
s38417 9219 30 208289 8405 21 7492 16 209775 24125 17 5.64
sin 5416 225 215318 13666 182 5254 85 110254 5550 82 13.10
cavlc 693 16 16339 522 17 644 12 11888 381 12 1.70
dec 304 3 5469 8 4 304 3 5096 8 4 0.48
int2float 260 16 6432 270 16 210 10 3891 149 10 0.75
priority 978 250 102085 9064 127 490 13 10099 572 14 4.53

Improvement 21.72% 46.30% 43.00% 24.20% 34.44%

Comparing against the state of the art

In our experiments, we conducted a comparison against the current state-of-the-art RSFQ

results in PBMap [159]. To perform the evaluation, we utilized the Suny RSFQ cell library [187].

This library shares the same cells as the one employed in [159], which is not openly available.

Although the JJ count per cell might vary slightly, delay and DFF count remain unaffected.

We report the results over the ISCAS [73] and EPFL [3] benchmarks. The baseline consists of

un-optimized designs in the AIG format. We evaluate the quality of the design in terms of JJ

count for area and logic depth for latency, as clock frequency cannot be truly characterized

before place and route. This is in line with prior work. Differently from PBmap, we map the

benchmarks to enable gate-level pipelining. Hence, in our method, also POs are balanced.

Table 6.5 shows the results of the comparison. For our approach, we present the size

and depth of the optimized XAG, and the area (number of JJs), number of path-balancing

DFFs, and delay (as number of cycles) of the obtained RSFQ circuit. The time shows the total

synthesis and mapping run time. For PBMap, we show the area, number of DFFs, and delay.

Our synthesis algorithms considerably reduce the average size and depth of the baseline by

21.72% and 46.30%, respectively. After technology mapping, area, DFFs, and delay are reduced

by 43.00%, 24.20%, and 34.44% compared to PBMap. Our approach obtains higher area and

DFF count only on benchmark s38417 due to additional DFFs for PO balancing.

6.5 Summary

In this chapter, we focused on logic synthesis for the two most advanced superconducting logic

families: the single-flux quantum (SFQ) and the adiabatic quantum-flux parametron (AQFP).

We identified challenging problems related to path balancing and fan-out branching, and we

proposed technology mapping algorithms to address them. First, we studied the technology

legalization problem of AQFP circuits, which involves inserting buffers and splitters elements

189

Chapter 6 . Specializing Synthesis for Superconducting Technologies

(B/S) to meet the path-balancing and fan-out-branching requirements. This problem is

particularly challenging since splitter cells are clocked. We demonstrated that there is a

polynomial time algorithm to insert buffers and splitters that leads to an optimal depth circuit.

We proposed two depth-optimal buffer and splitter insertion techniques based on ALAP

scheduling and ASAP scheduling. Additionally, we presented a post-mapping optimization

heuristic based on minimum-register retiming to reduce the number of B/S elements. We

demonstrated a reduction in the number of B/S elements up to 14% and logic depth up to

15% compared to the previous state-of-the-art scheduling-based B/S insertion method. Our

method also achieved competitive results compared to the current state of the art with very

short run times, making possible to use these methods in a design-space exploration (DSE)

engine. Additionally, we showed that our method achieves near-optimal results on small

benchmarks within minimal runtime and scales to benchmarks 10 to 100 times larger than

those typically used in AQFP synthesis. Second, we presented a complete logic synthesis flow

for the single-flux quantum (SFQ) logic family. We described the technology-independent

logic synthesis problem as an XAG minimization problem. The XAG closely abstract the SFQ

logic primitives and offers better opportunities to restructure logic compared to AIGs. We

proposed several techniques focusing on minimizing the circuit depth as a proxy to reduce

circuit imbalances and, consequently, path balancing costs. These methods include advanced

algebraic rules, ESOP balancing, and graph mapping for XAGs. Our technology mapping

methodology consists of library binding using supergates, buffer insertion and optimization,

and splitter insertion. We realized an automatic tool for SFQ synthesis by combining these

methods. Our technology-independent synthesis flow reduced the average depth and size of

designs by 46% and 21.72%, respectively. Additionally, we demonstrated an average reduction

in area, number of DFFs, and delay by 43.00%, 24.20%, and 34.44%, respectively, compared to

the state of the art.

190

7 Conclusions

In this thesis, we investigated technology mapping and optimization algorithms for logic

synthesis of advanced technologies. Motivated by (i) the need for novel techniques to improve

EDA tools for established technologies; and (ii) promising power-efficient superconducting

technologies, we researched and improved technology mapping and synthesis solutions to

enhance the quality of modern integrated circuits for CMOS and superconducting electronics.

7.1 Summary of Thesis Contributions

We list the contributions of this thesis following the same order they appear in the thesis.

• Chapter 3 - Technology Mapping for FPGAs: we significantly improved performance-

driven technology mapping for FPGAs using novel Boolean decomposition algo-

rithms.

First, we introduced efficient algorithms to compute the Ashenhurst-Curtis decomposi-

tion (ACD) of functions into lookup tables (LUTs). We proposed several improvements

that make ACD applicable to LUT mappers and resynthesis engines. We provided al-

gorithms to minimize the decomposition cost in terms of the number of LUTs, edges,

and delay, considering input arrival times. We demonstrated that our approach runs

up to 80 times faster compared to state-of-the-art Boolean decomposition methods

while achieving the decomposition success of an optimum SAT-based implementation.

Second, we presented a performance-driven LUT mapper that integrates our formu-

lation of ACD for delay minimization. We showed remarkable delay improvements

by 12.39%, on average, compared to the state-of-the-art LUT mapping with structural

choices. Furthermore, our mapper discovered some of the best (public) results for

combinational benchmark circuits [3]. Third, we proposed a LUT mapper that leverages

non-routable FPGA connections between adjacent LUTs to optimize for performance.

We demonstrated that our implementation outperforms the state-of-the-art solution

for this problem in delay, area, edge count, and run time by 6.22%, 3.82%, 3.09%, and

191

Chapter 7 . Conclusions

20%, respectively. Additionally, while we mainly focused on performance, our findings

demonstrated the great potential of these methods also for area optimization.

• Chapter 4 - Technology Mapping for Standard Cells: we improved technology map-

ping for standard cells by (i) developing novel matching techniques, (ii) extending

mapping to support multiple-output cells, and (iii) enhancing area optimization

heuristics under delay constraints.

First, we introduced a matching technique called hybrid matching to improve on top

of Boolean matching by supporting large cells and leveraging structural redundancies.

We demonstrated a 6.5% average reduction in area compared to Boolean matching, for

similar delay, on modern libraries. Second, we developed methods to support multiple-

output cells during technology mapping. We addressed the problem of detecting and

matching multiple-output cells and introduced the first selection and covering algo-

rithm for multiple-output cells. Our findings showed strong results in reducing the area

compared to alternative methods that consider multiple-output cells as white boxes

during technology mapping. Third, we studied technology mapping covering algorithms

and proposed solutions for improving area optimization under delay constraints. Finally,

we developed a modern technology mapper implementing the discussed features. We

demonstrated remarkable results in area and run time compared to open-source state-

of-the-art technology mappers [30]. On a 7nm standard cell library [44], our mapper

achieved an average area reduction of 9.22% and an average delay reduction of 2.59%

after buffering and gate sizing.

• Chapter 5 - Mapping for Logic Synthesis: we improved technology-independent

logic synthesis by (i) facilitating the optimization of multiple data structures and the

conversion between them, and (ii) developing a framework for the optimization of

factored form literals.

First, motivated by multiple existing graph representations to support optimization in

logic synthesis, we presented a versatile technique called graph mapping to convert a

homogeneous logic network into another while performing global Boolean optimization.

When the destination representation matches the starting one, graph mapping performs

logic rewriting. We demonstrated that graph mapping is one of the most effective logic

optimization approaches over MIGs, XAGs, and XMGs. Second, we presented algorithms

to efficiently leverage Boolean don’t care conditions during graph mapping and logic

rewriting. We demonstrated that an MIG flow implementing logic rewriting with don’t

care conditions reduces the number of gates by 4.31%, on average, compared to the state-

of-the-art flow. Additionally, we showed that the combination of graph mapping and

don’t care-based logic rewriting significantly contributes to obtaining the best-known

results in MIG size for the EPFL benchmarks [3]. Last, we focused on the optimization

of factored form literals, a critical metric that correlates strongly with the number of

transistors required in CMOS implementation. We developed a comprehensive portfolio

of algorithms to optimize the factored form literal count in Boolean networks modeled

192

7.2 Open Problems

as AIGs. We demonstrated that these methods help to reduce the area of standard

cell designs by 2.8%, on average, compared to the state-of-the-art AIG synthesis flow.

Additionally, we discussed applications in transistor-level synthesis and in the automatic

creation of custom standard cells.

• Chapter 6 - Specializing Synthesis for Superconducting Technologies: we improved

logic synthesis for superconducting electronics by (i) studying the theoretical proper-

ties of technology mapping with unconventional technological constraints and (ii)

developing novel technology mapping and optimization algorithms.

First, we investigated the buffer and splitter (B/S) insertion problem in AQFP circuits,

which is a step of technology mapping. We proved that the depth-optimal B/S insertion

problem is tractable with polynomial complexity, and we provided two depth-optimal

algorithms based on the as-late-as-possible (ALAP) and as-soon-as-possible (ASAP)

strategies. Additionally, we developed a post-mapping area-oriented B/S optimization

algorithm based on minimum-register retiming. We showed remarkable results in qual-

ity, with up to 14% reduction in the number of B/S elements, and demonstrated the

scalability of these methods over benchmarks that are from 10 to 100 times larger than

the ones that any other related work could handle. Second, we presented a framework

for SFQ logic consisting of algebraic and Boolean synthesis transformations for XAGs

focusing on depth minimization, and technology mapping satisfying the SFQ techno-

logical requirements. We showed strong results compared to state-of-the-art SFQ flows

with an average reduction in the area and delay of 43% and 34%, respectively.

7.2 Open Problems

In this section, we provide future research directions in logic synthesis inspired by the problems

addressed in this thesis.

• Improving Boolean decomposition for LUT mapping. In Chapter 3, we introduced

several flexible and powerful algorithms to solve the Ashenhurst-Curtis decomposition

(ACD) problem. However, three opportunities remain (partially) unexplored: (i) ACD

for incompletely-specified Boolean functions; (ii) ACD targeting more than two levels

of LUTs; and (iii) run time acceleration using GPUs. First, the proposed ACD method

can be extended to handle incompletely-specified Boolean functions by incorporating

an additional step that minimizes the number of unique cofactors during variable

partitioning under the available don’t care conditions. Second, while we developed

an algorithm capable of performing decomposition across multiple levels of logic, its

algorithmic complexity and dependency on truth tables currently limits its scalability

during mapping or resynthesis. Significant progress can be achieved by leveraging an

initial variable order, which can be determined by arrival time, and by using BDDs.

These strategies can reduce complexity and improve the practicality of our multi-level

decomposition approach. Third, our proposed algorithms can be re-engineered to run

193

Chapter 7 . Conclusions

on GPUs. This approach could significantly reduce run times by enabling multiple

decompositions to be computed in parallel during technology mapping (e.g., lowering

the run times in Table 3.8).

• Enhancing area-driven LUT mapping with Boolean decomposition. Towards the end

of Chapter 3, we briefly explored the significant potential of ACD for area-oriented LUT

mapping, demonstrating remarkable results for certain benchmarks. However, as our

primary focus in this chapter was on performance optimization, we did not develop

highly efficient engines for area optimization. This omission presents an opportunity

for future research to advance area-oriented LUT mapping techniques.

• Non-routable connection structure in FPGAs. In Chapter 3, we proposed algorithms to

leverage non-routable connections between adjacent LUTs in recent AMD FPGAs [10],

which form a single-rail cascade structure, to reduce the delay. However, an FPGA

using a multiple-rail cascade structure could further improve the performance of typical

designs. This presents an opportunity for future research to investigate which FPGA ar-

chitectures should be implemented to maximize performance, specifically by analyzing

the mappability of functions and their delay (and area) across various LUT structures.

• Revisiting delay models for technology mapping. During our experiments in Chap-

ter 4, we observed that the gain-based delay model for certain standard cell libraries

lacked accuracy. This presents a significant opportunity to research more sophisticated

models. Additionally, instead of proposing new strategies to estimate delay, gain-based

delay models could be tuned in multiple delay iterations of technology mapping using

approximated results from static timing analysis. This approach would help estimate

the impact of load and slew on critical and near-critical paths, potentially leading to

better optimization of circuit performance.

• Inverter minimization in technology mapping. Technology mapping for standard cells

is a complex problem involving multiple heuristic choices and trade-offs. For instance,

positive slack on paths can be leveraged to reduce area, but selecting the optimal path

location where to reduce area among multiple eligible options is challenging. One

particularly difficult problem is inverter placement. The initial placement of inverters

often influences subsequent mapping decisions. During our experiments, we observed

that improper inverter placement could result in up to a 15% increase in area after

mapping. For example, in the IWLS benchmark leon3 [85], sub-optimal gate selection

could lead to a network with thousands of unnecessary inverters. Recovering from

incorrect inverter placement is a difficult task, as it requires significant adjustments

to reference estimations. By tweaking referencing policies in Section 4.5.2, alternative

solutions can be found, but no single method consistently works in practice. This

highlights a significant opportunity for future research to develop more robust strategies

for inverter placement and overall technology mapping optimization.

• Post-mapping optimization for standard cell design. While this thesis focused on

technology-independent synthesis and technology mapping for standard cell designs,

194

7.2 Open Problems

significant opportunities lie in post-mapping optimization. Technology-dependent syn-

thesis can leverage more accurate models of power, delay, and area to achieve superior

results. For instance, the critical path identified in a technology-independent model

often does not align with the critical path after mapping, as load effects are not consid-

ered in the technology-independent models. Currently, there are no open-source tools

that offer post-mapping optimization methods for standard cell designs, presenting a

substantial opportunity for further research and development in this domain.

195

Bibliography

[1] Akers. “Binary Decision Diagrams”. In: IEEE Transactions on Computers C-27.6 (1978),

pp. 509–516.

[2] Luca Amaru, A. Ajami, S. Chen, Y. Zhang, T.-L. Tung, T. Arifin, T. Liu, M. Pan, G. Naveen,

J. C. Vujkovic, P. Moceyunas, L. Clark, S. Whiteley, E. Mlinar, S. Lu, R. Singh, J. Chase,

A. Belov, D. Rawlings, S. Anderson, A. Salz, R. Freeman, J. Kawa, and S. Chase. “First

demonstration of a superconducting electronics microcontroller RTL-to-GDSII flow”.

In: GOMACTech (2021), pp. 1–4.

[3] L. Amarù, P.-E. Gaillardon, and G. De Micheli. “The EPFL Combinational Benchmark

Suite”. In: Proc. IWLS. 2015.

[4] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. “Biconditional

Binary Decision Diagrams: A Novel Canonical Logic Representation Form”. In: IEEE

Journal on Emerging and Selected Topics in Circuits and Systems 4.4 (2014), pp. 487–500.

[5] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. “Majority-Inverter

Graph: A New Paradigm for Logic Optimization”. In: IEEE Trans. CAD 35.5 (2016).

[6] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. “Majority-Inverter

Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization”. In:

Proc. DAC. San Francisco, CA, USA, 2014.

[7] Luca Amarú, Pierre-Emmanuel Gaillardon, Subhasish Mitra, and Giovanni De Micheli.

“New Logic Synthesis as Nanotechnology Enabler”. In: Proceedings of the IEEE 103.11

(2015), pp. 2168–2195.

[8] Luca Amarú, Mathias Soeken, Patrick Vuillod, Jiong Luo, Alan Mishchenko, Pierre-

Emmanuel Gaillardon, Janet Olson, Robert Brayton, and Giovanni De Micheli. “En-

abling exact delay synthesis”. In: Proc. ICCAD. 2017.

[9] Luca Amarú, Mathias Soeken, Patrick Vuillod, Jiong Luo, Alan Mishchenko, Janet Olson,

Robert Brayton, and Giovanni De Micheli. “Improvements to boolean resynthesis”. In:

Proc. DATE. 2018, pp. 755–760.

[10] AMD Versal CLB documentation. Accessed: 2024-09-06. URL: https://docs.amd.com/r/

en-US/am005-versal-clb/Look-Up-Table.

197

https://docs.amd.com/r/en-US/am005-versal-clb/Look-Up-Table
https://docs.amd.com/r/en-US/am005-versal-clb/Look-Up-Table

Bibliography

[11] Yuki Ando, Ryo Sato, Masamitsu Tanaka, Kazuyoshi Takagi, Naofumi Takagi, and Akira

Fujimaki. “Design and Demonstration of an 8-bit Bit-Serial RSFQ Microprocessor:

CORE e4”. In: IEEE Transactions on Applied Superconductivity 26.5 (2016), pp. 1–5.

[12] R. L. Ashenhurst. “The decomposition of switching functions”. In: Proc. Int. Symp.

Theory Switch. 1957, pp. 74–116.

[13] Christopher L Ayala, Ro Saito, Tomoyuki Tanaka, Olivia Chen, Naoki Takeuchi, Yuxing

He, and Nobuyuki Yoshikawa. “A semi-custom design methodology and environment

for implementing superconductor adiabatic quantum-flux-parametron microproces-

sors”. In: Superconductor Science and Technology 33.5 (2020).

[14] Christopher L. Ayala, Tomoyuki Tanaka, Ro Saito, Mai Nozoe, Naoki Takeuchi, and

Nobuyuki Yoshikawa. “MANA: A Monolithic Adiabatic iNtegration Architecture Micro-

processor Using 1.4-zJ/op Unshunted Superconductor Josephson Junction Devices”.

In: IEEE Journal of Solid-State Circuits 56.4 (2021), pp. 1152–1165.

[15] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.

“Algebraic decision diagrams and their applications”. In: Proc. ICCAD. 1993, pp. 188–

191.

[16] Rassul Bairamkulov, Alessandro Tempia Calvino, and Giovanni De Micheli. “Synthesis

of SFQ Circuits with Compound Gates”. In: Proc. VLSI-SoC. 2023.

[17] Rassul Bairamkulov and Giovanni De Micheli. “Compound Logic Gates for Pipeline

Depth Minimization in Single Flux Quantum Integrated Systems”. In: Proc. GLVLSI.

2023.

[18] Rassul Bairamkulov and Giovanni De Micheli. “Superconductive Electronics: A 25-Year

Review [Feature]”. In: IEEE Circuits and Systems Magazine 24.2 (2024), pp. 16–33.

[19] Rassul Bairamkulov and Giovanni De Micheli. “Towards Multiphase Clocking in Single-

Flux Quantum Systems”. In: 2024 29th Asia and South Pacific Design Automation

Conference (ASP-DAC). 2024, pp. 582–587.

[20] Rassul Bairamkulov, Siang-Yun Lee, Alessandro Tempia Calvino, Dewmini Sudara

Marakkalage, Mingfei Yu, and Giovanni De Micheli. “Technology-Aware Logic Synthe-

sis for Superconducting Electronics”. In: 2024 Design, Automation & Test in Europe

Conference & Exhibition (DATE). 2024, pp. 1–6.

[21] F. Beeftink, P. Kudva, D. Kung, and L. Stok. “Gate-size selection for standard cell li-

braries”. In: IEEE/ACM International Conference on Computer-Aided Design. 1998,

pp. 545–550.

[22] L. Benini, P. Vuillod, and G. De Micheli. “Iterative remapping for logic circuits”. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 17.10 (1998),

pp. 948–964.

[23] Luca Benini and Giovanni De Micheli. “A Survey of Boolean Matching Techniques for

Library Binding”. In: ACM Trans. Design Autom. Electr. Syst. (July 1997).

198

Bibliography

[24] V. Bertacco and M. Damiani. “Boolean function representation based on disjoint-

support decompositions”. In: Proc. Int. Conf. on Comp. Design. 1996, pp. 27–32.

[25] V. Bertacco and M. Damiani. “The disjunctive decomposition of logic functions”. In:

Proc. ICCAD. 1997, pp. 78–82.

[26] P. Bjesse and A. Boralv. “DAG-aware circuit compression for formal verification”. In:

IEEE/ACM ICCAD. 2004.

[27] Joan Boyar, René Peralta, and Denis Pochuev. “On the multiplicative complexity of

Boolean functions over the basis (∧, ⊕, 1)”. In: Theoretical Computer Science 235.1

(2000), pp. 43–57.

[28] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R. Wang. “MIS: A Multiple-

Level Logic Optimization System”. In: IEEE Trans. CAD (1987).

[29] Robert Brayton and C. McMullen. “The decomposition and factorization of Boolean

expression”. In: Proc. ISCAS. 1982.

[30] Robert Brayton and Alan Mishchenko. “ABC: An Academic Industrial-Strength Verifi-

cation Tool”. In: Computer Aided Verification. Ed. by Tayssir Touili, Byron Cook, and

Paul Jackson. 2010. URL: https://github.com/berkeley-abc/abc.

[31] Frank Markham Brown. Boolean reasoning: the logic of Boolean equations. Dover

Publications, 2nd edition, 2012.

[32] R. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”. In: IEEE

Trans. on Computers C-35.8 (1986), pp. 677–691.

[33] Ruizhe Cai, Olivia Chen, Ao Ren, Ning Liu, Caiwen Ding, Nobuyuki Yoshikawa, and

Yanzhi Wang. “A Majority Logic Synthesis Framework for Adiabatic Quantum-Flux-

Parametron Superconducting Circuits”. In: Proceedings of the 2019 on Great Lakes

Symposium on VLSI. ACM, 2019.

[34] Ruizhe Cai, Olivia Chen, Ao Ren, Ning Liu, Caiwen Ding, Nobuyuki Yoshikawa, and

Yanzhi Wang. “A Majority Logic Synthesis Framework for Adiabatic Quantum-Flux-

Parametron Superconducting Circuits”. In: Proceedings of GLSVLSI. 2019, pp. 189–

194.

[35] Ruizhe Cai, Olivia Chen, Ao Ren, Ning Liu, Nobuyuki Yoshikawa, and Yanzhi Wang.

“A Buffer and Splitter Insertion Framework for Adiabatic Quantum-Flux-Parametron

Superconducting Circuits”. In: Proceedings of ICCD. 2019, pp. 429–436.

[36] Vinicius Callegaro, Felipe S. Marranghello, Mayler G. A. Martins, Renato P. Ribas, and

Andre I. Reis. “Bottom-up disjoint-support decomposition based on cofactor and

boolean difference analysis”. In: ICCD. 2015, pp. 680–687.

[37] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam. “Reducing structural

bias in technology mapping”. In: Proc. ICCAD. 2005, pp. 519–526.

[38] Satrajit Chatterjee. “On Algorithms for Technology Mapping”. PhD thesis. EECS De-

partment, University of California, Berkeley, 2007.

199

https://github.com/berkeley-abc/abc

Bibliography

[39] Satrajit Chatterjee, Alan Mishchenko, and Robert Brayton. “Factor Cuts”. In: 2006

IEEE/ACM International Conference on Computer Aided Design. 2006, pp. 143–150.

[40] D. Chen and J. Cong. “DAOmap: a depth-optimal area optimization mapping algorithm

for FPGA designs”. In: Proc. ICCAD. 2004.

[41] G. Chen and J. Cong. “Simultaneous Logic Decomposition with Technology Mapping

in FPGA Designs”. In: Proc. FPGA. 2001, pp. 48–55.

[42] Olivia Chen, Ruizhe Cai, Yetang Wang, Fei Ke, Taiki Yamae, Ro Saito, Naoki Takeuchi,

and Nobuyuki Yoshikawa. “Adiabatic Quantum-Flux-Parametron: Towards Building

Extremely Energy-Efficient Circuits and Systems”. In: Scientific Reports 9 (2019).

[43] Zhufei Chu, Mathias Soeken, Yinshui Xia, and Giovanni De Micheli. “Functional de-

composition using majority”. In: ASP-DAC. 2018, pp. 676–681.

[44] Lawrence T. Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh Sinha,

Brian Cline, Chandarasekaran Ramamurthy, and Greg Yeric. “ASAP7: A 7-nm finFET

predictive process design kit”. In: Microelectronics Journal (2016).

[45] J. Cong and Y. Ding. “FlowMap: an optimal technology mapping algorithm for delay

optimization in lookup-table based FPGA designs”. In: Trans. CAD 13.1 (1994), pp. 1–

12.

[46] J. Cong and Yean-Yow Hwang. “Structural gate decomposition for depth-optimal tech-

nology mapping in LUT-based FPGA design”. In: DAC. 1996, pp. 726–729.

[47] J. Cong, C. Wu, and Y. Ding. “Cut Ranking and Pruning: Enabling a General and Efficient

FPGA Mapping Solution”. In: Proc. FPGA. 1999.

[48] Jason Cong, Yuzheng Ding, Tong Gao, and Kuang-Chien Chen. “LUT-based FPGA

technology mapping under arbitrary net-delay models”. In: Computers & Graphics

18.4 (1994), pp. 507–516.

[49] J. P. Curtis. A New Approach to the Design of Switching Circuits. D. Van Nostrand, 1962.

[50] M. De Marchi, D. Sacchetto, S. Frache, J. Zhang, P.-E. Gaillardon, Y. Leblebici, and G.

De Micheli. “Polarity control in double-gate, gate-all-around vertically stacked silicon

nanowire FETs”. In: 2012 International Electron Devices Meeting. 2012, pp. 8.4.1–8.4.4.

[51] G. De Micheli, R.K. Brayton, and A. Sangiovanni-Vincentelli. “Optimal State Assignment

for Finite State Machines”. In: Trans. CAD 4.3 (1985), pp. 269–285.

[52] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,

1994.

[53] Ewald Detjens, Gary Gannot, Richard Rudell, Alberto Sangiovanni-Vincentelli, and

Albert Wang. “Technology mapping in MIS”. In: Proc. ICCAD. 1987, pp. 116–119.

[54] R. Drechsler. “Pseudo-Kronecker expressions for symmetric functions”. In: IEEE Trans-

actions on Computers 48.9 (1999), pp. 987–990.

200

Bibliography

[55] R. Drechsler, N. Drechsler, and W. Gunther. “Fast exact minimization of BDD’s”. In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 19.3

(2000), pp. 384–389.

[56] W. C. Elmore. “The Transient Response of Damped Linear Networks with Particular

Regard to Wideband Amplifiers”. In: Journal of Applied Physics 19.1 (Jan. 1948), pp. 55–

63. eprint: https://pubs.aip.org/aip/jap/article-pdf/19/1/55/18307672/55_1_online.

pdf.

[57] EPFL Synthesis Competition Best Results [2023]. URL: https : / / github . com / lsils /

benchmarks/tree/v2023.1/best_results.

[58] Longfei Fan and Chang Wu. “FPGA Technology Mapping with Adaptive Gate Decom-

position”. In: Proc. FPGA. 2023, pp. 135–140.

[59] A. H. Farrahi and M. Sarrafzadeh. “Complexity of the lookup-table minimization prob-

lem for FPGA technology mapping”. In: IEEE Trans. CAD 13.11 (1994), pp. 1319–1332.

[60] R.J. Francis, J. Rose, and K. Chung. “Chortle: a technology mapping program for lookup

table-based field programmable gate arrays”. In: DAC. 1990, pp. 613–619.

[61] Rongliang Fu, Junying Huang, Mengmeng Wang, Nobuyuki Yoshikawa, Bei Yu, Tsung-

Yi Ho, and Olivia Chen. “BOMIG: A Majority Logic Synthesis Framework for AQFP

Logic”. In: Proceedings of DATE. 2023.

[62] Rongliang Fu, Mengmeng Wang, Yirong Kan, Nobuyuki Yoshikawa, Tsung-Yi Ho, and

Olivia Chen. “A Global Optimization Algorithm for Buffer and Splitter Insertion in

Adiabatic Quantum-Flux-Parametron Circuits”. In: Proceedings of ASP-DAC. 2023,

pp. 769–774.

[63] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda. “On variable ordering of binary

decision diagrams for the application of multi-level logic synthesis”. In: Proceedings of

the European Conference on Design Automation. 1992, pp. 50–54.

[64] Kris Gaj, Eby G. Friedman, and Marc J. Feldman. “Timing of Multi-Gigahertz Rapid Sin-

gle Flux Quantum Digital Circuits”. In: High Performance Clock Distribution Networks.

Ed. by Eby G. Friedman. Springer US, 1997, pp. 135–164.

[65] D. Gregory, K. Bartlett, A. deGeus, and G. Hachtel. “SOCRATES: A system for automati-

cally synthesizing and optimizing combinational logic”. In: Proceedings of the Design

Automation Conference. 1986, pp. 580–586.

[66] Antoine Grosnit, Cedric Malherbe, Rasul Tutunov, Xingchen Wan, Jun Wang, and

Haitham Bou Ammar. “BOiLS: Bayesian Optimisation for Logic Synthesis”. In: DATE.

2022, pp. 1193–1196.

[67] R. Gupta, B. Tutuianu, and L.T. Pileggi. “The Elmore delay as a bound for RC trees

with generalized input signals”. In: IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 16.1 (1997), pp. 95–104.

201

https://pubs.aip.org/aip/jap/article-pdf/19/1/55/18307672/55_1_online.pdf
https://pubs.aip.org/aip/jap/article-pdf/19/1/55/18307672/55_1_online.pdf
https://github.com/lsils/benchmarks/tree/v2023.1/best_results
https://github.com/lsils/benchmarks/tree/v2023.1/best_results

Bibliography

[68] W. Haaswijk, M. Soeken, L. Amarù, P. Gaillardon, and G. De Micheli. “A novel basis for

logic rewriting”. In: Proceedings Asia and South Pacific Design Automation Conference.

2017.

[69] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli. “SAT-Based Exact Synthe-

sis: Encodings, Topology Families, and Parallelism”. In: IEEE Trans. CAD (2020).

[70] Winston Jason Haaswijk, Mathias Soeken, Luca Amaru, Pierre-Emmanuel Gaillar-

don, and Giovanni De Micheli. “LUT Mapping and Optimization for Majority-Inverter

Graphs”. In: Proc. IWLS. 2016.

[71] Gary D. Hachtel and Fabio Somenzi. Logic Synthesis and Verification Algorithms.

Springer New York, NY, 1996.

[72] Ivo Háleček, Petr Fišer, and Jan Schmidt. “Are XORs in logic synthesis really necessary?”

In: IEEE Proc. DDECS. 2017.

[73] M. C. Hansen, H. Yalcin, and J. P. Hayes. “Unveiling the ISCAS-85 Benchmarks: A Case

Study in Reverse Engineering”. In: IEEE Des. Test. Comput. (1999).

[74] Yuxing He, Christopher L Ayala, Yu Zeng, Xihua Zou, Lianshan Yan, Wei Pan, and

Nobuyuki Yoshikawa. “Low clock skew superconductor adiabatic quantum-flux-parametron

logic circuits based on grid-distributed blocks”. In: Superconductor Science and Tech-

nology 36.1 (2022), p. 015006.

[75] Leo Hellerman. “A Catalog of Three-Variable Or-Invert and And-Invert Logical Circuits”.

In: IEEE Transactions on Electronic Computers EC-12.3 (1963), pp. 198–223.

[76] Quentin P. Herr, Anna Y. Herr, Oliver T. Oberg, and Alexander G. Ioannidis. “Ultra-low-

power superconductor logic”. In: Journal of Applied Physics 109.10 (2011), p. 103903.

[77] Gage Hills, Christian Lau, Andrew Wright, Samuel Fuller, Mindy Bishop, Tathagata

Srimani, Pritpal Kanhaiya, Rebecca Ho, Aya Amer, Yosi Stein, Denis Murphy, Arvind

Arvind, Anantha Chandrakasan, and Max Shulaker. “Modern microprocessor built

from complementary carbon nanotube transistors”. In: Nature 572 (Aug. 2019), pp. 595–

602.

[78] D. Scott Holmes, Andrew L. Ripple, and Marc A. Manheimer. “Energy-Efficient Su-

perconducting Computing—Power Budgets and Requirements”. In: IEEE Trans. on

Applied Superconductivity (2013).

[79] Bo Hu, Y. Watanabe, and M. Marek-Sadowska. “Gain-based technology mapping

for discrete-size cell libraries”. In: Proceedings Design Automation Conference. 2003,

pp. 574–579.

[80] Chao-Yuan Huang, Yi-Chen Chang, Ming-Jer Tsai, and Tsung-Yi Ho. “An Optimal

Algorithm for Splitter and Buffer Insertion in Adiabatic Quantum-Flux-Parametron

Circuits”. In: ICCAD. 2021.

[81] Juinn-Dar Huang, Jing-Yang Jou, and Wen-Zen Shen. “Compatible class encoding in

Roth-Karp decomposition for two-output LUT architecture”. In: Proc. ICCAD. 1995,

pp. 359–363.

202

Bibliography

[82] Zheng Huang, Lingli Wang, Yakov Nasikovskiy, and Alan Mishchenko. “Fast Boolean

matching based on NPN classification”. In: Intern. Conf. on Field-Programmable Tech-

nology. 2013, pp. 310–313.

[83] Aaron P. Hurst, Alan Mishchenko, and Robert K. Brayton. “Fast Minimum-Register

Retiming via Binary Maximum-Flow”. In: Formal Methods in Computer Aided Design

(FMCAD’07). 2007.

[84] J. Ishikawa, H. Sato, M. Hiramine, K. Ishida, S. Oguri, Y. Kazuma, and S. Murai. “A rule

based logic reorganization system LORES/EX”. In: Proceedings 1988 IEEE International

Conference on Computer Design: VLSI. 1988, pp. 262–266.

[85] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html. Accessed: 2024-

07-06.

[86] Nicola Jones. “How to stop data centres from gobbling up the world’s electricity”. In:

Nature 561 (Sept. 2018), pp. 163–166.

[87] S.K. Karandikar and S.S. Sapatnekar. “Logical effort based technology mapping”. In:

IEEE/ACM International Conference on Computer Aided Design. 2004, pp. 419–422.

[88] Naveen Kumar Katam and Massoud Pedram. “Logic Optimization, Complex Cell De-

sign, and Retiming of Single Flux Quantum Circuits”. In: IEEE Trans. on Applied Super-

conductivity (2018).

[89] T. Kawaguchi, M. Tanaka, K. Takagi, and N. Takagi. “Demonstration of an 8-Bit SFQ

Carry Look-Ahead Adder Using Clockless Logic Cells”. In: International Superconduc-

tive Electronics Conference. 2015.

[90] K. Keutzer. “DAGON: Technology Binding and Local Optimization by DAG Matching”.

In: Proceedings of Design Automation Conference. 1987.

[91] Alexander Khitun and Kang L. Wang. “Non-volatile magnonic logic circuits engineer-

ing”. In: Journal of Applied Physics 110.3 (2011), p. 034306.

[92] Nobutaka Kito, Kazuyoshi Takagi, and Naofumi Takagi. “Logic-Depth-Aware Tech-

nology Mapping Method for RSFQ Logic Circuits With Special RSFQ Gates”. In: IEEE

Transactions on Applied Superconductivity 32.4 (2022), pp. 1–5.

[93] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability.

1st. Addison-Wesley Professional, 2015.

[94] Kun Kong, Yun Shang, and Ruqian Lu. “An Optimized Majority Logic Synthesis Method-

ology for Quantum-Dot Cellular Automata”. In: IEEE Transactions on Nanotechnology

9.2 (2010), pp. 170–183.

[95] V. N. Kravets and K. A. Sakallah. “Constructive Multi-Level Synthesis by Way of Func-

tional Properties”. PhD thesis. University of Michigan, 2001.

[96] G. Krylov and E. G. Friedman. Single Flux Quantum Integrated Circuit Design. Springer,

2022.

203

http://iwls.org/iwls2005/benchmarks.html

Bibliography

[97] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. “Robust Boolean reasoning for

equivalence checking and functional property verification”. In: IEEE Transaction on

Computer-Aided Design of Integrated Circuits and Systems 21 (2002), pp. 1377–1394.

[98] Y. Kukimoto, R.K. Brayton, and P. Sawkar. “Delay-optimal technology mapping by DAG

covering”. In: Proc. DAC. 1998, pp. 348–351.

[99] Yung-Te Lai, M. Pedram, and S.B.K. Vrudhula. “BDD Based Decomposition of Logic

Functions with Application to FPGA Synthesis”. In: DAC. 1993.

[100] Eugene L. Lawler. “An Approach to Multilevel Boolean Minimization”. In: J. ACM 11.3

(1964), pp. 283–295.

[101] Eugene L. Lawler. Combinatorial Optimization. Holt Rinehart Winston, 1976.

[102] Choong Y. Lee. “Representation of switching circuits by binary-decision programs”. In:

Bell System Technical Journal 38 (1959), pp. 985–999.

[103] Daeyeal Lee, Dongwon Park, Chia-Tung Ho, Ilgweon Kang, Hayoung Kim, Sicun Gao,

Bill Lin, and Chung-Kuan Cheng. “SP&R: SMT-Based Simultaneous Place-and-Route

for Standard Cell Synthesis of Advanced Nodes”. In: IEEE Trans. CAD (2021).

[104] Siang-Yun Lee and Giovanni De Micheli. “Heuristic Logic Resynthesis Algorithms at

the Core of Peephole Optimization”. In: IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (2023).

[105] Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. “Beyond local optimality of

buffer and splitter insertion for AQFP circuits”. In: Proceedings of DAC. 2022, pp. 445–

450.

[106] Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. “Customizable On-the-fly

Design Space Exploration for Logic Optimization of Emerging Technologies”. In: Inter-

national Logic Synthesis Workshop (IWLS). 2023.

[107] Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. “Irredundant Buffer and Splitter

Insertion and Scheduling-Based Optimization for AQFP Circuits”. In: in Proc. IWLS.

2021.

[108] Siang-Yun Lee, Heinz Riener, Alan Mishchenko, Robert K. Brayton, and Giovanni De

Micheli. “A Simulation-Guided Paradigm for Logic Synthesis and Verification”. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 41.8 (2022),

pp. 2573–2586.

[109] Siang-Yun Lee, Alessandro Tempia Calvino, Heinz Riener, and Giovanni De Micheli.

“Late Breaking Results: Majority-Inverter Graph Minimization by Design Space Explo-

ration”. In: Proc. Design Automation Conference. 2024.

[110] Siang-Yun Lee, Alessandro Tempia Calvino, Heinz Riener, and Giovanni De Micheli.

“Technology Legalization and Optimization for Adiabatic Quantum-Flux Parametron”.

In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(2024).

204

Bibliography

[111] Tai-Cheng Lee, Cheng-Yen Yang, and Yih-Lang Li. “ITPlace: Machine Learning-Based

Delay-Aware Transistor Placement for Standard Cell Synthesis”. In: Proc. ICCAD. 2020.

[112] C. Legl, B. Wurth, and K. Eckl. “A Boolean approach to performance-directed technol-

ogy mapping for LUT-based FPGA designs”. In: DAC. 1996, pp. 730–733.

[113] C. Legl, B. Wurth, and K. Eckl. “Computing support-minimal subfunctions during

functional decomposition”. In: Trans. VLSI 6.3 (1998), pp. 354–363.

[114] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. “Logic decomposition during

technology mapping”. In: Trans. CAD 16.8 (1997), pp. 813–834.

[115] Charles E. Leiserson and James B. Saxe. “Retiming Synchronous Circuitry”. In: Algo-

rithmica 6.1–6 (1991), pp. 5–35.

[116] C S Lent, P D Tougaw, W Porod, and G H Bernstein. “Quantum cellular automata”. In:

Nanotechnology 4.1 (1993), p. 49.

[117] I. Levin and R.Y. Pinter. “Realizing expression graphs using table-lookup FPGAs”. In:

Proceedings of EURO-DAC 93 and EURO-VHDL 93- European Design Automation

Conference. 1993, pp. 306–311.

[118] Xi Li, Min Pan, Tong Liu, and Peter A. Beerel. “Multi-Phase Clocking for Multi-Threaded

Gate-Level-Pipelined Superconductive Logic”. In: 2022 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI). 2022, pp. 62–67.

[119] K.K. Likharev and V.K. Semenov. “RSFQ logic/memory family: a new Josephson-junction

technology for sub-terahertz-clock-frequency digital systems”. In: IEEE Trans. on Ap-

plied Superconductivity (1991).

[120] Tianji Liu, Lei Chen, Xing Li, Mingxuan Yuan, and Evangeline F. Y. Young. “FineMap: A

Fine-Grained GPU-Parallel LUT Mapping Engine”. In: Proc. ASP-DAC. 2024, pp. 392–

397.

[121] Lucas Machado and Jordi Cortadella. “Support-Reducing Decomposition for FPGA

Mapping”. In: TCAD 39.1 (2020), pp. 213–224.

[122] F. Mailhot and G. DeMicheli. “Automatic layout and optimization of static CMOS cells”.

In: Proceedings 1988 IEEE International Conference on Computer Design: VLSI. 1988.

[123] Frédéric Mailhot and Giovanni De Micheli. “Technology mapping using boolean match-

ing and don’t care sets”. In: Proceedings of the European Conference on Design Automa-

tion. 1990.

[124] V. Manohararajah, S. D. Brown, and Z. G. Vranesic. “Heuristics for Area Minimization

in LUT-Based FPGA Technology Mapping”. In: IEEE Trans. CAD 25.11 (2006), pp. 2331–

2340.

[125] Dewmini Sudara Marakkalage and Giovanni De Micheli. “Fanout-Bounded Logic

Synthesis for Emerging Technologies”. In: IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 43.5 (2024), pp. 1415–1428.

205

Bibliography

[126] Dewmini Sudara Marakkalage, Heinz Riener, and Giovanni De Micheli. “Optimizing

Adiabatic Quantum-Flux-Parametron (AQFP) Circuits using an Exact Database”. In:

NANOARCH. 2021, pp. 1–6.

[127] Dewmini Sudara Marakkalage, Eleonora Testa, Heinz Riener, Alan Mishchenko, Math-

ias Soeken, and Giovanni De Micheli. “Three-Input Gates for Logic Synthesis”. In: IEEE

Trans. CAD (2020).

[128] Osvaldo Martinello, Felipe S. Marques, Renato P. Ribas, and André I. Reis. “KL-Cuts:

A new approach for logic synthesis targeting multiple output blocks”. In: Proc. DATE.

2010, pp. 777–782.

[129] Giulia Meuli, Vinicius Possani, Rajinder Singh, Siang-Yun Lee, Alessandro Tempia

Calvino, Dewmini Sudara Marakkalage, Patrick Vuillod, Luca Amaru, Scott Chase,

Jamil Kawa, and Giovanni De Micheli. “Majority-based Design Flow for AQFP Super-

conducting Family”. en. In: DATE (2022), p. 6.

[130] Giulia Meuli, Mathias Soeken, and Giovanni De Micheli. “Xor-And-Inverter Graphs for

Quantum Compilation”. In: npj Quantum Information 8.7 (2022).

[131] Shin-ichi Minato. “Zero-suppressed BDDs for set manipulation in combinatorial prob-

lems”. In: Proceedings of the 30th International Design Automation Conference. New

York, NY, USA: Association for Computing Machinery, 1993, pp. 272–277.

[132] A. Mishchenko and R. Brayton. “Scalable Logic Synthesis using a Simple Circuit Struc-

ture”. In: Proc. IWLS. 2006.

[133] A. Mishchenko, R. Brayton, and S. Chatterjee. “Boolean factoring and decomposition

of logic networks”. In: Proc. ICCAD. 2008, pp. 38–44.

[134] A. Mishchenko, R. Brayton, and S. Jang. “Global Delay Optimization Using Structural

Choices”. In: Proc. FPGA. 2010, pp. 181–184.

[135] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang. “Scalable Don’t-Care-Based Logic

Optimization and Resynthesis”. In: ACM Trans. Reconfigurable Technol. Syst. 4.4 (2011).

[136] A. Mishchenko and R.K. Brayton. “SAT-based complete don’t-care computation for

network optimization”. In: Design, Automation and Test in Europe. 2005, 412–417 Vol.

1.

[137] A. Mishchenko, S. Chatterjee, and R. Brayton. “DAG-aware AIG rewriting: a fresh look

at combinational logic synthesis”. In: Proc. DAC. 2006.

[138] A. Mishchenko, S. Chatterjee, and R. Brayton. Fast Boolean matching for LUT structures.

Tech. rep. EECS Dep., UC Berkeley, 2007.

[139] A. Mishchenko, S. Chatterjee, and R. Brayton. FRAIGs: A unifying representation for

logic synthesis and verification. Tech. rep. EECS Dep., UC Berkeley, 2005.

[140] A. Mishchenko, S. Chatterjee, and R. K. Brayton. “Improvements to Technology Map-

ping for LUT-Based FPGAs”. In: IEEE Trans. CAD (2007).

206

Bibliography

[141] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton. “Combinational and sequential

mapping with priority cuts”. In: Proc. ICCAD. 2007.

[142] A. Mishchenko and T. Sasao. “Encoding of Boolean Functions and Its Application to

LUT Cascade Synthesis”. In: Proc. IWLS. 2002.

[143] Alan Mishchenko, Robert Brayton, Stephen Jang, and Victor Kravets. “Delay optimiza-

tion using SOP balancing”. In: Proc. ICCAD. 2011, pp. 375–382.

[144] Alan Mishchenko, Robert Brayton, Alessandro Tempia Calvino, and Giovanni De

Micheli. “Boolean Decomposition Revisited”. In: Proc. IWLS. 2023.

[145] Alan Mishchenko, Robert K. Brayton, Walter Lau Neto, Pierre-Emamnuel Gaillardon,

and Luca Amarù. “Control logic restructuring for area optimization”. In: International

Workshop on Logic & Synthesis. 2022.

[146] Alan Mishchenko, Satrajit Chatterjee, Robert K. Brayton, and Maciej J. Ciesielski. “An

Integrated Technology Mapping Environment”. In: International Workshop on Logic &

Synthesis. 2005.

[147] Alan Mishchenko and Marek Perkowski. “Fast Heuristic Minimization of Exclusive-

Sums-of-Products”. In: Intern. Reed-Muller Workshop (2001).

[148] Eric Mlinar, Stephen Whiteley, Anton Belov, Song Chen, Luca Amaru, Tong Liu, Yalan

Zhang, Taufik Arifin, Min Pan, Troy Barbee, Rajinder Singh, Amir Ajami, Danny Rawl-

ings, Giulia Meuli, Rajesh Kumar, Arturo Salz, Scott Chase, and Jamil Kawa. “An RTL-to-

GDSII Flow for Single Flux Quantum Circuits Based on an Industrial EDA Toolchain”.

In: IEEE Transactions on Applied Superconductivity 33.5 (2023), pp. 1–7.

[149] Oleg A. Mukhanov. “Energy-Efficient Single Flux Quantum Technology”. In: IEEE Trans-

actions on Applied Superconductivity (2011), pp. 760–769.

[150] R. Murgai. “Performance optimization under rise and fall parameters”. In: 1999 IEEE/ACM

International Conference on Computer-Aided Design. Digest of Technical Papers (Cat.

No.99CH37051). 1999, pp. 185–190.

[151] S. Muroga, Y. Kambayashi, H.C. Lai, and J.N. Culliney. “The transduction method-

design of logic networks based on permissible functions”. In: Trans. on Computers

38.10 (1989).

[152] Cody D. Murray and R. Ryan Williams. “On the (non) NP-hardness of computing circuit

complexity”. In: Proceedings of the 30th Conference on Computational Complexity.

CCC ’15. Portland, Oregon: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015,

pp. 365–380.

[153] Walter Lau Neto, Luca Amarú, Vinicius Possani, Patrick Vuillod, Jiong Luo, Alan Mishchenko,

and Pierre-Emmanuel Gaillardon. “Improving LUT-based optimization for ASICs”. In:

Proc. DAC. 2022.

[154] Walter Lau Neto, Yingjie Li, Pierre-Emmanuel Gaillardon, and Cunxi Yu. “FlowTune:

End-to-End Automatic Logic Optimization Exploration via Domain-Specific Multi-

armed Bandit”. In: Trans. CAD 42.6 (2023), pp. 1912–1925.

207

Bibliography

[155] Peichen Pan and Chih-Chang Lin. “A New Retiming-Based Technology Mapping Algo-

rithm for LUT-Based FPGAs”. In: Proc. ACM/SIGDA Sixth International Symposium on

FPGA. 1998.

[156] Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware Designs, 2nd edition.

USA: Oxford University Press, 2010.

[157] Ghasem Pasandi and Massoud Pedram. “An Efficient Pipelined Architecture for Super-

conducting Single Flux Quantum Logic Circuits Utilizing Dual Clocks”. In: IEEE Trans.

on Applied Superconductivity (2020).

[158] Ghasem Pasandi and Massoud Pedram. “Balanced Factorization and Rewriting Al-

gorithms for Synthesizing Single Flux Quantum Logic Circuits”. In: Proc. GLSVLSI.

2019.

[159] Ghasem Pasandi and Massoud Pedram. “PBMap: A Path Balancing Technology Map-

ping Algorithm for Single Flux Quantum Logic Circuits”. In: Trans. on Applied Super-

conductivity (2019).

[160] Ghasem Pasandi and Massoud Pedram. “qSeq: Full Algorithmic and Tool Support for

Synthesizing Sequential Circuits in Superconducting SFQ Technology”. In: 2021 58th

ACM/IEEE Design Automation Conference (DAC). 2021, pp. 133–138.

[161] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. Grygiel, M. Nowicka, R. Malvi,

Z. Wang, and J.S. Zhang. “Decomposition of multiple-valued relations”. In: Proc. Inter.

Symp. on Mult.- Valued Logic. 1997, pp. 13–18.

[162] Vinicius Neves Possani, Vinicius Callegaro, André I. Reis, Renato P. Ribas, Felipe de

Souza Marques, and Leomar Soares da Rosa. “Graph-Based Transistor Network Gener-

ation Method for Supergate Design”. In: IEEE Trans. VLSI Systems (2016).

[163] Gianluca Radi, Alessandro Tempia Calvino, and Giovanni De Micheli. “In Medio Stat

Virtus*: Combining Boolean and Pattern Matching”. In: 2024 29th Asia and South

Pacific Design Automation Conference (ASP-DAC). 2024, pp. 404–410.

[164] Shubham Rai, Alessandro Tempia Calvino, Heinz Riener, Giovanni De Micheli, and

Akash Kumar. “Utilizing XMG-Based Synthesis to Preserve Self-Duality for RFET-Based

Circuits”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 42.3 (2023), pp. 914–927.

[165] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen. “Mapping into LUT

structures”. In: Proc. DATE. 2012, pp. 1579–1584.

[166] Giovanni V. Resta, Alessandra Leonhardt, Yashwanth Balaji, Stefan De Gendt, Pierre-

Emmanuel Gaillardon, and Giovanni De Micheli. “Devices and Circuits Using Novel

2-D Materials: A Perspective for Future VLSI Systems”. In: IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 27.7 (2019), pp. 1486–1503.

[167] Heinz Riener, Winston Haaswijk, Alan Mishchenko, Giovanni De Micheli, and Mathias

Soeken. “On-the-fly and DAG-aware: Rewriting Boolean Networks with Exact Synthe-

sis”. In: DATE. 2019.

208

Bibliography

[168] Heinz Riener, Eleonora Testa, Luca Amaru, Mathias Soeken, and Giovanni De Micheli.

“Size Optimization of MIGs with an Application to QCA and STMG Technologies”. In:

Proc. NANOARCH. 2018.

[169] Heinz Riener, Eleonora Testa, Winston Haaswijk, Alan Mishchenko, Luca Amarú, Gio-

vanni De Micheli, and Mathias Soeken. “Scalable Generic Logic Synthesis: One Ap-

proach to Rule Them All”. In: Proc. DAC. 2019, pp. 1–6.

[170] J. P. Roth and R. M. Karp. “Minimization Over Boolean Graphs”. In: IBM Journal of

Research and Development 6.2 (1962), pp. 227–238.

[171] R.L. Rudell and A. Sangiovanni-Vincentelli. “Multiple-Valued Minimization for PLA

Optimization”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 6.5 (1987), pp. 727–750.

[172] Richard Rudell. “Logic Synthesis for VLSI Design”. PhD thesis. EECS Department,

University of California, Berkeley, 1989.

[173] Sergey V. Rylov. “Clockless Dynamic SFQ and Gate With High Input Skew Tolerance”.

In: IEEE Transactions on Applied Superconductivity 29.5 (2019), pp. 1–5.

[174] Ro Saito, Christopher L Ayala, and Nobuyuki Yoshikawa. “Buffer reduction via N-phase

clocking in adiabatic quantum-flux-parametron benchmark circuits”. In: IEEE Trans.

Appl. Supercond. 31.6 (2021), pp. 1–8.

[175] Tsutomu Sasao and Masahira Fujita. “Representations of Logic Functions Using EXOR

Operators”. In: Representation of Discrete Functions. Springer, 1996.

[176] H. Savoj, R.K. Brayton, and H.J. Touati. “Extracting local don’t cares for network opti-

mization”. In: 1991 IEEE International Conference on Computer-Aided Design Digest of

Technical Papers. 1991, pp. 514–517.

[177] B. Schmitt, A. Mishchenko, and R. Brayton. “SAT-based area recovery in structural

technology mapping”. In: Proc. ASP-DAC. 2018, pp. 586–591.

[178] Ellen Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho W. Moon, Rajeev Murgai,

Alexander Saldanha, Hamid Savoj, Paul R. Stephan, Robert K. Brayton, and Alberto L.

Sangiovanni-Vincentelli. “SIS : A System for Sequential Circuit Synthesis”. In: Technical

Report UCB/ERI, M92/41, ERL (1992).

[179] K. L. Shepard, S. M. Carey, E. K. Cho, B. W. Curran, R. F. Hatch, D. E. Hoffman, S. A.

McCabe, G. A. Northrop, and R. Seigler. “Design methodology for the S/390 Parallel

Enterprise Server G4 microprocessors”. In: IBM Journal of Research and Development

41.4.5 (1997), pp. 515–547.

[180] Mathias Soeken, Giovanni De Micheli, and Alan Mishchenko. “Busy man’s synthesis:

Combinational delay optimization with SAT”. In: Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017. 2017, pp. 830–835.

209

Bibliography

[181] Mathias Soeken, Winston Haaswijk, Eleonora Testa, Alan Mishchenko, Luca G. Amarù,

Robert K. Brayton, and Giovanni De Micheli. “Practical exact synthesis”. In: 2018

Design, Automation & Test in Europe Conference & Exhibition (DATE). 2018, pp. 309–

314.

[182] Mathias Soeken, Alan Mishchenko, Ana Petkovska, Baruch Sterin, Paolo Ienne, Robert

K. Brayton, and Giovanni De Micheli. “Heuristic NPN Classification for Large Functions

Using AIGs and LEXSAT”. In: Theory and Applications of Satisfiability Testing. Ed. by

Nadia Creignou and Daniel Le Berre. 2016.

[183] Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt,

Giulia Meuli, Fereshte Mozafari, Siang-Yun Lee, Alessandro Tempia Calvino, Dewmini

Sudara Marakkalage, and Giovanni De Micheli. “The EPFL Logic Synthesis Libraries”.

In: CoRR arXiv:1805.05121v3 (2022). eprint: arXiv:1805.05121v3.

[184] F. Somenzi and R. K. Brayton. “Minimization of Boolean relations”. In: IEEE Interna-

tional Symposium on Circuits and Systems (1989), pp. 738–743.

[185] T. Stanion and C. Sechen. “Quasi-algebraic decompositions of switching functions”.

In: in Advanced Res. VLSI. 1995, pp. 358–367.

[186] L. Stok, M.A. Iyer, and A.J. Sullivan. “Wavefront technology mapping”. In: Proc. DATE.

1999, pp. 531–536.

[187] Suny RSFQ Cell Library. http://www.physics.sunysb.edu/Physics/RSFQ/Lib/contents.

html.

[188] Ivan E. Sutherland and Robert F. Sproull. “The theory of logical effort: designing for

speed on the back of an envelope”. In: Advanced Research in VLSI. 1991.

[189] Naoki Takeuchi, Shuichi Nagasawa, Fumihiro China, Takumi Ando, Mutsuo Hidaka,

Yuki Yamanashi, and Nobuyuki Yoshikawa. “Adiabatic quantum-flux-parametron cell

library designed using a 10 kA cm−2 niobium fabrication process”. In: Superconductor

Science and Technology 30.3 (2017), p. 035002.

[190] Naoki Takeuchi, Mai Nozoe, Yuxing He, and Nobuyuki Yoshikawa. “Low-latency adia-

batic superconductor logic using delay-line clocking”. In: Applied Physics Letters 115.7

(2019). eprint: https://doi.org/10.1063/1.5111599.

[191] Naoki Takeuchi, Dan Ozawa, Yuki Yamanashi, and Nobuyuki Yoshikawa. “An adiabatic

quantum flux parametron as an ultra-low-power logic device”. In: Superconductor

Science and Technology 26.3 (2013).

[192] Naoki Takeuchi, Yuki Yamanashi, and Nobuyuki Yoshikawa. “Adiabatic quantum-flux-

parametron cell library adopting minimalist design”. In: Journal of Applied Physics

117.17 (2015), p. 173912.

[193] M. Tanaka, A. Kitayama, T. Koketsu, M. Ito, and A. Fujimaki. “Low-Energy Consumption

RSFQ Circuits Driven by Low Voltages”. In: IEEE Transactions on Applied Superconduc-

tivity 23.3 (2013), pp. 1701104–1701104.

210

arXiv:1805.05121v3
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/contents.html
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/contents.html
https://doi.org/10.1063/1.5111599

Bibliography

[194] Alessandro Tempia Calvino and Giovanni De Micheli. “Algebraic and Boolean Meth-

ods for SFQ Superconducting Circuits”. In: 2024 29th Asia and South Pacific Design

Automation Conference (ASP-DAC). 2024, pp. 588–593.

[195] Alessandro Tempia Calvino and Giovanni De Micheli. “Depth-Optimal Buffer and

Splitter Insertion and Optimization in AQFP Circuits”. In: Proceedings of ASP-DAC.

2023, pp. 152–158.

[196] Alessandro Tempia Calvino and Giovanni De Micheli. “Scalable Logic Rewriting Using

Don’t Cares”. In: 2024 Design, Automation & Test in Europe Conference & Exhibition

(DATE). 2024, pp. 1–6.

[197] Alessandro Tempia Calvino and Giovanni De Micheli. “Technology Mapping Using

Multi-Output Library Cells”. In: 2023 IEEE/ACM International Conference on Computer

Aided Design (ICCAD). 2023, pp. 1–9.

[198] Alessandro Tempia Calvino, Giovanni De Micheli, Alan Mishchenko, and Robert Bray-

ton. “Enhancing Delay-driven LUT Mapping with Boolean Decomposition”. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems (2024).

[199] Alessandro Tempia Calvino, Alan Mishchenko, Giovanni De Micheli, and Robert Bray-

ton. Practical Boolean Decomposition for Delay-driven LUT Mapping. 2024. arXiv:

2406.06241 [cs.LO].

[200] Alessandro Tempia Calvino, Alan Mishchenko, Herman Schmit, Ethan Mahintorabi,

Giovanni De Micheli, and Xiaoqing Xu. “Improving Standard-Cell Design Flow using

Factored Form Optimization”. In: 2023 60th ACM/IEEE Design Automation Conference

(DAC). 2023, pp. 1–6.

[201] Alessandro Tempia Calvino, Heinz Riener, Shubham Rai, and Giovanni De Micheli.

“From Logic to Gates: A Versatile Mapping Approach to Restructure Logic”. In: Proc.

IWLS. 2021.

[202] Alessandro Tempia Calvino, Heinz Riener, Shubham Rai, Akash Kumar, and Giovanni

De Micheli. “A Versatile Mapping Approach for Technology Mapping and Graph Opti-

mization”. In: ASP-DAC. 2022.

[203] Alessandro Tempia Calvino, Xiaoqing Xu, and Schmit Herman. “Transistor-level syn-

thesis”. US20240169134A1. 2024.

[204] Eleonora Testa, Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. “Algebraic

and Boolean Optimization Methods for AQFP Superconducting Circuits”. In: Proc.

ASP-DAC. 2021.

[205] Eleonora Testa, Mathias Soeken, Luca Amarù, and Giovanni De Micheli. “Reducing the

Multiplicative Complexity in Logic Networks for Cryptography and Security Applica-

tions”. In: 2019 56th ACM/IEEE DAC. 2019.

[206] Hervé Touati. “Logic Synthesis for VLSI Design”. PhD thesis. EECS Department, Uni-

versity of California, Berkeley, 1989.

211

https://arxiv.org/abs/2406.06241

Bibliography

[207] Naoki Tsuji, Yuki Yamanashi, Naoki Takeuchi, Christopher Ayala, and Nobuyuki Yoshikawa.

“Design and implementation of scalable register files using adiabatic quantum flux

parametron logic”. In: Proceedings of ISEC. 2017.

[208] Navin Vemuri, Priyank Kalla, and Russell Tessier. “BDD-based logic synthesis for LUT-

based FPGAs”. In: ACM Trans. Des. Autom. Electron. Syst. 7.4 (2002), pp. 501–525.

[209] T. Villa and A. Sangiovanni-Vincentelli. “NOVA: state assignment of finite state ma-

chines for optimal two-level logic implementation”. In: Trans. CAD 9.9 (1990), pp. 905–

924.

[210] Feng Wang, Liren Zhu, Jiaxi Zhang, Lei Li, Yang Zhang, and Guojie Luo. “Dual-Output

LUT Merging during FPGA Technology Mapping”. In: Proc. ICCAD. Virtual Event, USA,

2020.

[211] Claire Wolf. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/.

[212] Qiuyun Xu, Christopher L Ayala, Naoki Takeuchi, Yuki Murai, Yuki Yamanashi, and

Nobuyuki Yoshikawa. “Synthesis flow for cell-based adiabatic quantum-flux-parametron

structural circuit generation with HDL back-end verification”. In: IEEE Trans. Appl.

Supercond. 27.4 (2017), pp. 1–5.

[213] Xiaoqing Xu, Herman Schmit, and Alessandro Tempia Calvino. “Auto-creation of cus-

tom standard cells”. US20240176943A1. 2024.

[214] Congguang Yang and M. Ciesielski. “BDS: a BDD-based logic optimization system”. In:

IEEE Trans. CAD 21.7 (2002), pp. 866–876.

[215] S. Yang and M.J. Ciesielski. “Optimum and suboptimum algorithms for input encoding

and its relationship to logic minimization”. In: Trans. CAD 10.1 (1991), pp. 4–12.

[216] W. Yang, L. Wang, and A. Mishchenko. “Lazy Man’s Logic Synthesis”. In: Proc. ICCAD.

2012, pp. 597–604.

[217] S Yorozu, Y Kameda, H Terai, A Fujimaki, T Yamada, and S Tahara. “A single flux

quantum standard logic cell library”. In: Physica C: Superconductivity 378-381 (2002),

pp. 1471–1474.

[218] N. Yoshikawa, D. Ozawa, and Y. Yamanashi. “Ultra-Low-Power Superconducting Logic

Devices Using Adiabatic Quantum Flux Parametron”. In: Extended Abstracts of the

International Conference on Solid State Devices and Materials. 2011.

[219] Mingfei Yu, Dewmini Sudara Marakkalage, and Giovanni De Micheli. “Garbled Circuits

Reimagined: Logic Synthesis Unleashes Efficient Secure Computation”. In: Cryptogra-

phy 7.4 (2023).

[220] Jianyong Yuan, Peiyu Wang, Junjie Ye, Mingxuan Yuan, Jianye Hao, and Junchi Yan.

“EasySO: exploration-enhanced Reinforcement Learning for Logic Synthesis Sequence

Optimization and a Comprehensive RL Environment”. In: ICCAD. 2023, pp. 1–9.

212

https://yosyshq.net/yosys/

Alessandro
TEMPIA CALVINO
Ph.D. Candidate

1020 Renens - Switzerland
alessandro.tempiacalvino@epfl.ch

https://aletempiac.github.io
alessandro-tempia-calvino

My research interests include electronic design automation, logic synthesis, algorithms, new data structures, verifi-
cation, digital design, and emerging technologies.

Education
Sep 2020

pres
Doctor of Philosophy - Ph.D. in Computer and Communication Sciences, EPFL (École Poly-
technique Fédérale de Lausanne), Lausanne, Switzerland
Thesis advisor: Prof. Giovanni De Micheli

Sep 2018
Sep 2020

Master of Science in Computer Engineering, Télécom Paris, EURECOM - Biot, France
Specialization in Smart Objects - joint master program with Politecnico di Torino, GPA 4.0/4

Sep 2017
Mar 2020

Master of Science in Computer Engineering, Politecnico di Torino, Torino, Italy
Specialization in Embedded Systems - joint master program with Télécom Paris, Full marks with
honor (110 cum laude/110)

Sep 2014
Sep 2017

Bachelor’s Degree in Computer Engineering, Politecnico di Torino, Torino, Italy

Experience
Sep 2020

pres
Doctoral Researcher, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland
Integrated Systems Laboratory - Electronics design automation (EDA), logic synthesis, and emerging
technologies.

Jun 2022
Oct 2022

Research Intern, X, the Moonshot Factory (Google X), Mountain View, USA
Logic synthesis and EDA.

Mar 2020
Aug 2020

R&D Engineer, Télécom Paris, EURECOM - Biot, France
Implementation of a model-checker for embedded system models.

Jul 2019
Dec 2019

Intern, Synopsys, Montbonnot-Saint-Martin, France
Implementation of timing-driven algorithms for the synthesis of digital circuits.

Publications
Conference and Workshop Papers:

A. Costamagna, A. Tempia Calvino, A. Mishchenko, G. De Micheli, “Area-Oriented Optimization After
Standard-Cell Mapping”, in Asian and South Pacific Design Automation Conference (ASP-DAC), accepted,
2025.
M. Yu, A. Tempia Calvino, M. Soeken, G. De Micheli, “Back-end-aware Fault-tolerant Quantum Oracle
Synthesis”, in Asian and South Pacific Design Automation Conference (ASP-DAC), accepted, 2025.
M. Yu, S. Carpov, A. Tempia Calvino, G. De Micheli, “On the Synthesis of High-performance Homomorphic
Boolean Circuits”, in Workshop on Encrypted Computing & Applied Homomorphic Cryptography (WAHC),
accepted, 2024.
S.-Y. Lee, A. Tempia Calvino, H. Riener, G. De Micheli, “Late Breaking Results: Majority-Inverter Graph
Minimization by Design Space Exploration”, in Design Automation Conference (DAC), 2024.
A. Tempia Calvino, G. De Micheli, A. Mishchenko, R. Brayton, “Practical Boolean Decomposition for
Delay-driven LUT Mapping”, in International Workshop on Logic & Synthesis (IWLS), 2024.
A. Costamagna, A. Tempia Calvino, A. Mishchenko, G. De Micheli, “Post-Mapping Resubstitution For
Area-Oriented Optimization”, in International Workshop on Logic & Synthesis (IWLS), 2024.
A. Costamagna, A. Tempia Calvino, A. Mishchenko, G. De Micheli, “Area-Oriented Resubstitution For
Networks of Look-Up Tables”, in International Workshop on Logic & Synthesis (IWLS), 2024.

213

A. Tempia Calvino, G. De Micheli, “Scalable Logic Rewriting Using Don’t Cares”, in Design Automation
and Test in Europe Conference (DATE), 2024.
R. Bairamkulov, S.-Y. Lee, A. Tempia Calvino, D. Marakkalage, M. Yu, G. De Micheli, “Technology-Aware
Logic Synthesis for Superconductive Electronics”, in Design Automation and Test in Europe Conference
(DATE), 2024.
A. Tempia Calvino, G. De Micheli, “Algebraic and Boolean Methods for SFQ Superconducting Circuits”, in
Asian and South Pacific Design Automation Conference (ASP-DAC), 2024.
G. Radi, A. Tempia Calvino, G. De Micheli, “In Medio Stat Virtus: Combining Boolean and Pattern
Matching”, in Asian and South Pacific Design Automation Conference (ASP-DAC), 2024.
A. Tempia Calvino, G. De Micheli, “Technology Mapping Using Multi-output Library Cells”, in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2023.
R. Bairamkulov, A. Tempia Calvino, G. De Micheli, “Synthesis of SFQ Circuits with Compound Gates”, in
2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration (VLSI-SoC), 2023.
A. Tempia Calvino, A. Mishchenko, H. Schmit, E. Mahintorabi, G. De Micheli, X. Xu, “Improving Standard-
Cell Design Flow using Factored Form Optimization”, in ACM/IEEE Design Automation Conference (DAC),
2023.
A. Tempia Calvino, G. De Micheli, “Technology Mapping Using Multi-output Library Cells”, in International
Workshop on Logic & Synthesis (IWLS), 2023.
A. Mishchenko, R. Brayton, A. Tempia Calvino, G. De Micheli, “Boolean Decomposition Revisited”, in
International Workshop on Logic & Synthesis (IWLS), 2023.
A. Tempia Calvino, G. De Micheli, “Depth-Optimal Buffer and Splitter Insertion and Optimization in AQFP
Circuits”, in Asian and South Pacific Design Automation Conference (ASP-DAC), 2023.
A. Tempia Calvino, G. De Micheli, “Depth-optimal Buffer and Splitter Insertion and Optimization in AQFP
Circuits”, in International Workshop on Logic & Synthesis (IWLS), 2022.
G. Meuli, V. Possani, R. Singh, S.-Y. Lee, A. Tempia Calvino, D. Marakkalage, P. Vuillod, L. Amarù, S.
Chase, J. Kawa, and G. De Micheli, “Majority-based design flow for AQFP superconducting family”, in Design
Automation and Test in Europe Conference (DATE), 2022.
L. Apvrille, P. de Saqui-Sannes, O. Hotescu, A. Tempia Calvino, “SysML models verification relying on
dependency graphs”, in International Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2022.
A. Tempia Calvino, H. Riener, S. Rai, G. De Micheli, “A versatile mapping approach for technology mapping
and graph optimization”, in Asian and South Pacific Design Automation Conference (ASP-DAC), 2022.
A. Tempia Calvino, H. Riener, S. Rai, G. De Micheli, “From logic to gates: A versatile mapping approach
to restructure logic”, in International Workshop on Logic & Synthesis (IWLS), 2021.
A. Tempia Calvino, L. Apvrille, “Direct model-checking of SysML models”, in International Conference on
Model-Driven Engineering and Software Development (MODELSWARD), 2021.

Journal Papers and Book Chapters:
A. Tempia Calvino, G. De Micheli, A Mishchenko, R. Brayton, “Enhancing Delay-driven LUT Mapping with
Boolean Decomposition”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2024.
Andrea Costamagna, A. Tempia Calvino, A Mishchenko, G. De Micheli, “Area-Oriented Resubstitution For
Networks of Look-Up Tables”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), under review, 2024.
S.-Y. Lee, A. Tempia Calvino, G. De Micheli, “Technology Legalization and Optimization for Adiabatic
Quantum-Flux Parametron”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2024.
R. Bairamkulov, A. Tempia Calvino, G. De Micheli, “Synthesis of SFQ Circuits with Compound Gates”, in
VLSI-SoC 2023: Silicon Innovations for Trustworthy Artificial Intelligence, Springer, 2024.
L. Apvrille, P. Saqui-Sannes, O.A. Hotescu, A. Tempia Calvino, “Dependency Graphs to Boost the Verifica-
tion of SysML Models”, in Model-Driven Engineering and Software Development, MODELSWARD 2021-2022,
Springer, 2023.
S. Rai, A. Tempia Calvino, H. Riener, G. De Micheli, A. Kumar, “Utilizing XMG-based Synthesis to Preserve
Self-duality for RFET-based Circuits”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 2022.

214

Preprints:
M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli, F. Mozafari, S.-Y. Lee, A. Tempia
Calvino, D. S. Marakkalage, G. De Micheli, “The EPFL logic synthesis libraries”, arXiv preprint arXiv:1805.05121v3,
2022.

Patents
A. Tempia Calvino, Xiaoqing Xu, Herman Schmit, “Transistor-level synthesis”, US 18462628, 2024.
Xiaoqing Xu, Herman Schmit, A. Tempia Calvino, “Auto-creation of custom standard cells”, US 18235437,
2024.

Invited and Conference Talks
Invited Talks:

A. Tempia Calvino, “Technology-aware logic synthesis for superconducting electronics”, in International
Workshop on Quantum, Cryogenic and Superconductive Computing, Fukuoka, Japan, 2024.
A. Tempia Calvino, “The EPFL Logic Synthesis Libraries: open-source tools for classical and emerging
technologies”, in Free Silicon Conference (FSiC), Paris, France, 2024.
A. Tempia Calvino, “EPFL Benchmark Results Update”, in International Workshop on Logic & Synthesis
(IWLS), Zurich, Switzerland, 2024.
A. Tempia Calvino, “Improving Technology Mapping for Standard Cells”, at IBM Thomas J. Watson Re-
search Center (online), 2024.
A. Tempia Calvino, “Improving Delay-driven LUT Mapping with Boolean Decomposition”, at Efinix Inc.
(online), 2024.
A. Tempia Calvino, “Improving Delay-driven LUT Mapping with Boolean Decomposition”, at AMD Inc.
(Vivado team) (online), 2023.
A. Tempia Calvino, “Technology Mapping Using Multi-output Library Cells”, at Google X (online), 2023.
A. Tempia Calvino, “Improving Standard-Cell Design Flow using Factored Form Optimization”, at Cadence
Design Systems Inc., San Jose (CA), USA, 2023.
A. Tempia Calvino, “EPFL Benchmark Results Update”, in International Workshop on Logic & Synthesis
(IWLS), Lausanne, Switzerland, 2023.
A. Tempia Calvino, “EPFL Benchmark Results Update”, in International Workshop on Logic & Synthesis
(IWLS) (online), 2022.
A. Tempia Calvino, “EPFL Benchmark Results Update”, in International Workshop on Logic & Synthesis
(IWLS) (online), 2021.

Conference Talks:
A. Tempia Calvino, “Practical Boolean Decomposition for Delay-driven LUT Mapping”, in International
Workshop on Logic & Synthesis (IWLS), Zurich, Switzerland, 2024.
A. Tempia Calvino, “Area-Oriented Resubstitution For Networks of Look-Up Tables”, in International Work-
shop on Logic & Synthesis (IWLS), Zurich, Switzerland, 2024.
A. Tempia Calvino, “Scalable Logic Rewriting Using Don’t Cares”, in Design Automation and Test in Europe
Conference (DATE), Valencia, Spain, 2024.
A. Tempia Calvino, “Algebraic and Boolean Methods for SFQ Superconducting Circuits”, in Asian and
South Pacific Design Automation Conference (ASP-DAC), Incheon, South Korea, 2024.
A. Tempia Calvino, “In Medio Stat Virtus: Combining Boolean and Pattern Matching”, in Asian and South
Pacific Design Automation Conference (ASP-DAC), Incheon, South Korea, 2024.
A. Tempia Calvino, “Technology Mapping Using Multi-output Library Cells”, in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), San Francisco (CA), USA, 2023.
A. Tempia Calvino, “Improving Standard-Cell Design Flow using Factored Form Optimization”, in ACM/IEEE
Design Automation Conference (DAC), San Francisco (CA), USA, 2023.
A. Tempia Calvino, “Technology Mapping Using Multi-output Library Cells”, in International Workshop on
Logic & Synthesis (IWLS), Lausanne, Switzerland, 2023.
A. Tempia Calvino, “Depth-Optimal Buffer and Splitter Insertion and Optimization in AQFP Circuits”, in
Asian and South Pacific Design Automation Conference (ASP-DAC), Tokyo, Japan, 2023.
A. Tempia Calvino, “Depth-optimal Buffer and Splitter Insertion and Optimization in AQFP Circuits”, in
International Workshop on Logic & Synthesis (IWLS), online, 2023.

215

A. Tempia Calvino, “A versatile mapping approach for technology mapping and graph optimization”, in
Asian and South Pacific Design Automation Conference (ASP-DAC), online, 2022.
A. Tempia Calvino, “From Logic to Gates: A Versatile Mapping Approach to Restructure Logic”, in Inter-
national Workshop on Logic & Synthesis (IWLS), online, 2021.

Honors and Awards
O-1 U.S. work visa - individuals with an extraordinary ability in sciences.
Best Student Paper Award at International Workshop on Logic & Synthesis 2024 (IWLS) for the paper
“Area-Oriented Resubstitution For Networks of Look-Up Tables”.
Best Student Paper Nomination at International Workshop on Logic & Synthesis 2024 (IWLS) for the paper
“Practical Boolean Decomposition for Delay-driven LUT Mapping”.
Best paper award at 2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration System-
on-Chip (VLSI-SoC) for the paper “Synthesis of SFQ Circuits with Compound Gates”.
First place in the International Workshop on Logic & Synthesis (IWLS) Contest 2022: “Synthesis of small
circuits for completely-specified multi-output Boolean functions represented using truth table”.
Best Student Paper Candidate at International Workshop on Logic & Synthesis 2021 (IWLS) for the paper
“From Logic to Gates: A Versatile Mapping Approach to Restructure Logic”.
Best Poster Award at International Conference on Model-Driven Engineering and Software Development
(MODELSWARD) 2021 for the paper “Direct Model-checking of SysML Models”.
EDIC I&C Ph.D. Fellowship, EPFL, 2020.

Teaching Assistantships
Design Technologies for Integrated Systems, M.Sc. course, Fall 2023, EPFL.
Digital System Design, B.Sc. course, Spring 2023, EPFL.
Real time embedded systems, M.Sc. course, Spring 2022, EPFL.
Design Technologies for Integrated Systems, M.Sc. course, Fall 2021, EPFL.
Real time embedded systems, M.Sc. course, Spring 2021, EPFL.
Object-Oriented Programming, B.Sc. course, Spring 2018, Politecnico di Torino.
Algorithms and Programming in C, B.Sc. course, Fall 2017, Politecnico di Torino.

Professional service
Software Development of Mockturtle: an open-source logic synthesis library, available at:

https://github.com/lsils/mockturtle
Service Contributing and maintaining open-source software. Maintaining the EPFL logic synthesis libraries,

available at: https://github.com/lsils/lstools-showcase and contributing to the logic synthesis tool
ABC, available at: https://github.com/berkeley-abc/abc.

Service Maintainer of the EPFL Combinational Benchmark Suite and its competition. New updates and best
results are presented annually at the International Workshop on Logic & Synthesis (IWLS). Available
at: https://github.com/lsils/benchmarks.

Reviewer Reviewed for several top-tier conferences and journals such as TCAD, TODAES, ICCAD, DATE, DAC,
IWLS, DDECS, and ISVLSI.

Member Member of IEEE, ACM, and IEEE Young Professionals

Technical and Personal Skills
Domains of expertise
Logic synthesis, electronic design automation, digital design, microelectronics, algorithms, data struc-
tures, computer architectures.
Programming Languages
C, C++, VHDL, Verilog, Java, Python, TCL, Bash, LaTeX, and more.
Languages

English, Italian, French

216

	Acknowledgements
	Abstract (English/Italian)
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Electronic Design Automation
	Research Motivation
	Conventional CMOS Technologies
	Superconducting Electronics

	Thesis Contributions
	Technology Mapping
	Mapping for Logic Synthesis
	Synthesis for Superconducting Electronics

	Thesis Organization

	Background
	Boolean Algebra
	Data Structures
	Truth Tables
	Two-level Representations
	Binary Decision Diagrams
	Multi-level Logic Networks

	Cuts and Partitions
	Cuts and Cut Enumeration
	Windowing

	Matching
	Equivalence Classes
	Pattern Matching
	Boolean Matching
	Generalized Matching

	Algorithms
	Algebraic Methods
	Boolean Methods
	Exact Synthesis Methods

	Benchmark suites
	Summary

	Technology Mapping for FPGAs
	Motivation
	Preliminaries
	Boolean Decomposition
	FPGA Technology Mapping

	Boolean Decomposition into LUTs
	Theory
	Finding a Feasible Variable Partition
	Functional Encoding and Support Minimization
	Maximizing the Shared Set
	Boolean Decomposition into Two LUTs
	Boolean Decomposition Beyond 2 Levels
	Experimental Results

	Technology Mapping with Boolean Decomposition
	Delay-oriented ACD
	Technology Mapping Algorithm with ACD
	Experimental Results

	Improving Delay Leveraging Non-routable FPGA Connections
	Technology Mapping Algorithm
	Experimental Results

	Summary

	Technology Mapping for Standard Cells
	Motivation
	Preliminaries
	Delay Models in Technology Mapping
	Related Works
	Covering

	Hybrid Matching
	Preliminaries
	Boolean and Pattern Matching
	Mapping with Hybrid Matching
	Experimental Results

	Technology Mapping Using Multiple-output Cells
	Extraction of Multiple-output Cells
	Technology Mapping using Multiple-output Cells
	Experimental Results
	Discussion

	Improving Covering Algorithms for Technology Mapping
	Related Works
	Referencing Policy and Gate Selection
	Alternative Matches
	Experimental Results

	Extended Mapping (emap)
	Experimental Results

	Summary

	Mapping for Logic Synthesis
	Motivation
	Versatile Graph Mapping
	Related Work on Graph Mapping
	Versatile Mapping
	Experimental Results

	Scalable Logic Rewriting Using Don't Care Conditions
	Don't Care Classes
	Matching with Don't Cares
	Logic Rewriting with Don't Cares
	Experimental Results

	Factored Form Literals Optimization
	Preliminaries
	Factored Forms in AIGs
	Logic Optimization for Literal Count
	Experimental Results
	Applications

	Summary

	Specializing Synthesis for Superconducting Technologies
	Motivation
	Preliminaries
	Adiabatic Quantum-Flux Parametron
	Single-Flux Quantum
	Key Points

	Technology Mapping for AQFP Circuits
	Preliminaries
	Related Works
	Depth-Optimal Buffer and Splitter Insertion
	Buffer and Splitter Optimization
	AQFP Technology Mapping
	Experimental Results

	Logic Synthesis for SFQ Circuits
	Related Works
	XAG-based Logic Synthesis
	Technology Mapping
	Experimental Results

	Summary

	Conclusions
	Summary of Thesis Contributions
	Open Problems

	Bibliography
	Curriculum Vitae

