Utilizing XMG-based synthesis to preserve self-duality for RFET-based circuits
Published in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022
Individual transistors based on emerging reconfigurable nanotechnologies exhibit electrical conduction for both types of charge carriers. These transistors, referred to as reconfigurable field-effect transistors (RFETs), enable dynamic reconfiguration to demonstrate either a p- or an n-type functionality. This duality of functionality at the transistor level is efficiently abstracted as a self-dual Boolean logic. In this article, we specifically aim to preserve self-duality by using Xor-majority graphs (XMGs) as the logic representation during logic synthesis and technology mapping.